# Deploy your alert with Grafana by Terraform and some common error with K8s
###### tags: `research` `devops` `tutorials` `grafana`
>*Hi there @everyone, continue of my mood for writing blog, i will release something to help you define the alert on grafana just use by terraform and managing them :smile:. So go to find how to do that*
## What you looking for
![](https://hackmd.io/_uploads/rkiWqmFbp.png)
* Tools **only** for used to observation and monitoring like a visualizer.
* Just work with if exist **datasource provider** (E.x: Prometheus and metrics exporter)
* It contains multiple dashboard through WebUI for purpose monitoring
* For quickly to action with grafana, you need to consider with `alert` because it can annouce you on real time. Perfect :small_airplane: it have on Grafana
## Behind the scene of alert
- So with you can reduce the problem with your system. You can sleep :smile: on working because if not have alert it just shut and don't make you do anything :tada:
- But it not good like you thinks so you need to going pros for writing the perfect alert of all system. This is not possible with me :smiling_face_with_smiling_eyes_and_hand_covering_mouth:, so i just take cover some situation alert for your system, especially for K8s workload that what i want to share.
- All that alert is just scripting with Terraform, you just need to understand to make that and you can define what you want not need me :smile:
## Step to setup Alert in Grafana with Terraform
### Understand construct of alert in Grafana
![](https://hackmd.io/_uploads/SJU-hmt-p.png)
- So you will need to defind alert rule and with label is waring of alert, Grafana will send this alert via Notification Managing and push them to contact point you configuration
- But it not easily to find way to define alert rule because the document talk about this is not detail, but okay i will teach you backdoor :smiling_face_with_smiling_eyes_and_hand_covering_mouth:
1. Generate token to access grafana via api by go to this one ![](https://hackmd.io/_uploads/Bk73n7tbp.png)
2. Create with admin or viewer role for this. So this will generate for you the token to access grafana of you via this curl command
```bash=
curl -H "Authorization: Bearer {token}" https://<Grafana-URI>/api/dashboards/home
```
3. Take it back, so go to Grafana and create a new alert for doing understand workflow ![](https://hackmd.io/_uploads/BklQwaQKba.png) If you understand that ! Pretty cool with your effort and so you just need play with it for understand what we need to create alert
4. So after that you create the alert for you, you can get this alert via json object on token you create on step 2
```bash=
curl -H "Authorization: Bearer {token}" https://<Grafana-URI>/api/v1/provisioning/alert-rules/{UID} | jq
```
[](https://hackmd.io/_uploads/ryS7kEt-p.png)
5. Copy that to a file and go to next step. That all you need to configure for you own alert
![](https://hackmd.io/_uploads/HJvtlNYWa.png)
### Go deepest with terraform - friend of any devops :sweat_smile:
With terraform, you need find out provider work with, It luckily Grafana have official provider with terraform. Let go for detail and config that
**Updated: You should be upgrade version 2.9.0 for Grafana Provider, It will fix the null error when you set the `0s` for during time query**
```terraform=
# providers.tf
terraform {
required_providers {
grafana = {
source = "grafana/grafana"
version = "=1.40.1"
}
}
}
provider "grafana" {
url = "Grafana_URI"
auth = var.grafana_auth
}
```
So with provider you need to additional grafana and grafana_auth for it find your grafana. So go to `main.tf` and found what i do with this `terraform` script
```terraform=
#main.tf
# You get the datasource prometheus
data "grafana_data_source" "prometheus" {
name = "Prometheus"
}
# Similar get loki
data "grafana_data_source" "loki" {
name = "loki"
}
# Create contact point
resource "grafana_contact_point" "base_alert" {
name = "Base Alert via Microsoft Team"
teams {
url = var.webhook_team
title = "Prod InFlow24 Metric Error Alert !!!"
disable_resolve_message = true
message = <<EOT
{{ range .Alerts.Firing }}
Alert summaries:
{{ template "Alert Instance Template" . }}
{{ end }}
EOT
}
}
resource "grafana_contact_point" "log_alert" {
name = "Log Alert via Microsoft Team"
teams {
disable_resolve_message = true
url = var.webhook_team
title = "Prod InFlow24 Log Error Alert !!!"
message = <<EOT
{{ template "ErrorLogMessage" . }}
EOT
}
}
# Alert template Grafana will send to webhook
resource "grafana_message_template" "base_alert" {
name = "Prometheus Alert Template"
template = <<EOT
{{ define "Alert Instance Template" }}
{{ range .Annotations.SortedPairs }}
- {{ .Name }} = {{ .Value }}
{{ end }}
{{ end}}
EOT
}
resource "grafana_message_template" "log_alert" {
name = "Loki Alert Template"
template = <<EOT
{{ define "ErrorLogMessage" }}
{{ if gt (len .Alerts.Firing) 0 }}
{{ range .Alerts.Firing }}
{{ .Annotations.AlertValues }}
{{ end }}
{{ range .Alerts.Firing }}
View URL: [Link to grafana]({{ .Annotations.GrafanaLink }})
{{ end }}
{{ end }}
{{ end }}
EOT
}
# Notifcation Policy
resource "grafana_notification_policy" "notification_policy" {
group_by = ["..."]
contact_point = grafana_contact_point.base_alert.name
group_wait = "45s"
group_interval = "4m"
repeat_interval = "1h"
policy {
matcher {
label = "datasource"
match = "="
value = "Prometheus"
}
contact_point = grafana_contact_point.base_alert.name
group_by = ["alertname"]
continue = true
group_wait = "45s"
group_interval = "4m"
repeat_interval = "1h"
}
policy {
matcher {
label = "datasource"
match = "="
value = "Loki"
}
contact_point = grafana_contact_point.log_alert.name
group_by = ["alertname"]
continue = true
group_wait = "45s"
group_interval = "4m"
repeat_interval = "1h"
}
}
# Must be create folder for alert (NOTE: Obligatory)
resource "grafana_folder" "prometheus_alert" {
title = "Prometheus Alert Provisioning by Terraform"
}
resource "grafana_folder" "loki_alert" {
title = "Loki Alert Provisioning by Terraform"
}
# Create Rule Alert
resource "grafana_rule_group" "prometheus_alert" {
name = "Prometheus Alert Rule Group"
folder_uid = grafana_folder.prometheus_alert.uid
interval_seconds = 60
org_id = 1
rule {
name = "Pod High CPU Resource"
for = "2m"
condition = "B"
no_data_state = "OK"
exec_err_state = "Alerting"
is_paused = false
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Pod have high resource than permit for 2 minutes - (CPU > 85%)"
}
labels = {
"datasource" = "Prometheus"
}
data {
ref_id = "A"
query_type = ""
relative_time_range {
from = 600
to = 0
}
datasource_uid = data.grafana_data_source.prometheus.uid
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "(sum(node_namespace_pod_container:container_cpu_usage_seconds_total:sum_irate{cluster=~\".*\", namespace=~\".*\", pod=~\".*\"}) by (container,pod,namespace) / sum(cluster:namespace:pod_cpu:active:kube_pod_container_resource_limits{cluster=~\".*\", namespace=~\".*\", pod=~\".*\"}) by (container,pod,namespace)) \u003e= 0.85"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
query_type = ""
relative_time_range {
from = 0
to = 0
}
datasource_uid = "-100" # Expression query type
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "Pod High Memory Resource"
for = "2m"
no_data_state = "OK"
exec_err_state = "Alerting"
condition = "B"
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Pod have high resource than permit for 2 minutes - (Memory > 95%)"
}
labels = {
"datasource" = "Prometheus"
}
is_paused = false
data {
ref_id = "A"
query_type = ""
relative_time_range {
from = 600
to = 0
}
datasource_uid = data.grafana_data_source.prometheus.uid
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "(sum(container_memory_working_set_bytes{job=\"kubelet\", metrics_path=\"/metrics/cadvisor\", cluster=~\".*\", namespace=~\".*\", pod=~\".*\", container!=\"\", image!=\"\"}) by (container,pod,namespace) / sum(cluster:namespace:pod_memory:active:kube_pod_container_resource_limits{cluster=~\".*\", namespace=~\".*\", pod=~\".*\"}) by (container,pod,namespace)) \u003e= 0.95"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
query_type = ""
relative_time_range {
from = 0
to = 0
}
datasource_uid = "-100"
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "Pod Not Ready"
for = "5m"
condition = "B"
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Pod has been in a non-ready state for more than 5 minutes"
}
labels = {
"datasource" = "Prometheus"
}
no_data_state = "OK"
exec_err_state = "Alerting"
data {
ref_id = "A"
datasource_uid = data.grafana_data_source.prometheus.uid
relative_time_range {
from = 600
to = 0
}
query_type = ""
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "sum by (namespace, pod, cluster) (max by(namespace, pod, cluster) (kube_pod_status_phase{job=\"kube-state-metrics\", namespace=\".*\", phase=~\"Pending|Unknown|Failed\"}) * on(namespace, pod, cluster) group_left(owner_kind) topk by(namespace, pod, cluster) (1, max by(namespace, pod, owner_kind, cluster) (kube_pod_owner{owner_kind!=\"Job\"}))) > 0"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
datasource_uid = "-100"
relative_time_range {
from = 0
to = 0
}
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "Job Failed"
for = "1h"
condition = "B"
annotations = {
"Job Name" = "{{ $labels.job_name }}"
"Summary" = "Job failed to complete"
}
labels = {
"datasource" = "Prometheus"
}
no_data_state = "OK"
exec_err_state = "Alerting"
data {
ref_id = "A"
datasource_uid = data.grafana_data_source.prometheus.uid
relative_time_range {
from = 3600
to = 0
}
query_type = ""
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "kube_job_status_failed{job=\"kube-state-metrics\",namespace=\"infrastructure\"} > 0"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
datasource_uid = "-100"
relative_time_range {
from = 0
to = 0
}
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "OOMKilled"
for = "0s"
condition = "B"
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Immediate termination (SIGKILL) OOMKilled during 10Min before"
}
labels = {
"datasource" = "Prometheus"
}
no_data_state = "OK"
exec_err_state = "Alerting"
data {
ref_id = "A"
datasource_uid = data.grafana_data_source.prometheus.uid
relative_time_range {
from = 600
to = 0
}
query_type = ""
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "(kube_pod_container_status_terminated{namespace=~\".*\"} > 0) and (kube_pod_container_status_last_terminated_exitcode{namespace=~\".*\"} == 137)"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
datasource_uid = "-100"
relative_time_range {
from = 0
to = 0
}
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "Error Termination"
for = "0s"
condition = "B"
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Abnormal termination (SIGABRT) during 10Min before"
}
labels = {
"datasource" = "Prometheus"
}
no_data_state = "OK"
exec_err_state = "Alerting"
data {
ref_id = "A"
datasource_uid = data.grafana_data_source.prometheus.uid
relative_time_range {
from = 600
to = 0
}
query_type = ""
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "(kube_pod_container_status_waiting{namespace=~\".*\"} > 0) and (kube_pod_container_status_last_terminated_exitcode{namespace=~\".*\"} == 134)"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
datasource_uid = "-100"
relative_time_range {
from = 0
to = 0
}
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "ErrPullImages"
for = "0s"
condition = "B"
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Cannot pull images during 10Min before"
}
labels = {
"datasource" = "Prometheus"
}
no_data_state = "OK"
exec_err_state = "Alerting"
data {
ref_id = "A"
datasource_uid = data.grafana_data_source.prometheus.uid
relative_time_range {
from = 600
to = 0
}
query_type = ""
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "(kube_pod_container_status_waiting{namespace=~\".*\"} > 0) and (kube_pod_container_status_last_terminated_exitcode{namespace=~\".*\"} == 134)"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
datasource_uid = "-100"
relative_time_range {
from = 0
to = 0
}
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
rule {
name = "ServiceRestarted"
for = "0s"
condition = "B"
annotations = {
"Pod" = "{{ $labels.pod }}"
"Summary" = "Service restarted during 15m ago"
}
labels = {
"datasource" = "Prometheus"
}
no_data_state = "OK"
exec_err_state = "Alerting"
data {
ref_id = "A"
datasource_uid = data.grafana_data_source.prometheus.uid
relative_time_range {
from = 900
to = 0
}
query_type = ""
model = jsonencode({
editorMode = "code"
datasource = {
type = "prometheus",
uid = "${data.grafana_data_source.prometheus.uid}"
}
expr = "increase(kube_pod_container_status_restarts_total[15m]) > 0"
intervalMs = 1000
legendFormat = "__auto"
maxDataPoints = 43200
range = true
hide = false
refId = "A"
})
}
data {
ref_id = "B"
datasource_uid = "-100"
relative_time_range {
from = 0
to = 0
}
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
3
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "last"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"reducer": "last",
"refId": "B",
"type": "reduce"
}
EOT
}
}
}
resource "grafana_rule_group" "loki_alert" {
name = "Loki Alert Rule Group"
folder_uid = grafana_folder.loki_alert.uid
interval_seconds = 60
org_id = 1
rule {
name = "ServiceLogErrors"
no_data_state = "OK"
exec_err_state = "Alerting"
for = "0s"
condition = "B"
annotations = {
"AlertValues" = <<EOT
{{ with $values }}
{{ range $k, $v := . }}
**{{toUpper $v.Labels.app}}** => {{$v.Labels.message}}
{{ end }}
{{ end }}
EOT
"GrafanaLink" = "https://${var.monitoring_domain_config}/explore?orgId=1&left=%7B\"datasource\":\"loki\",\"queries\":%5B%7B\"refId\":\"A\",\"editorMode\":\"code\",\"expr\":\"sum%20by%28app,message%29%20%28count_over_time%28%7Bapp%3D~%5C\".%2A%5C\",level%3D%5C\"Error%5C\"%7D%20%7C%20pattern%20%5C\"<app>%20<message>%5C\"%20%5B$__interval%5D%29%29\",\"queryType\":\"range\"%7D%5D,\"range\":%7B\"from\":\"now-15m\",\"to\":\"now\"%7D%7D"
}
labels = {
"level" = "error"
"type" = "api"
"datasource" = "Loki"
}
data {
ref_id = "A"
query_type = "range"
relative_time_range {
from = 900
to = 0
}
datasource_uid = data.grafana_data_source.loki.uid
model = jsonencode({
expr = <<EOT
sum by(app,message) (count_over_time({app=~".*",level="Error"} | pattern "<app> <message>" [${var.time_log}]))
EOT
editorMode = "builder"
hide = false
intervalMs = 1000
legendFormat = ""
maxDataPoints = 43200
query_type = "range"
refID = "A"
})
}
data {
ref_id = "B"
query_type = ""
relative_time_range {
from = 0
to = 0
}
datasource_uid = "-100"
model = <<EOT
{
"conditions": [
{
"evaluator": {
"params": [
0
],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": [
"A"
]
},
"reducer": {
"params": [],
"type": "count"
},
"type": "query"
}
],
"datasource": {
"type": "__expr__",
"uid": "-100"
},
"expression": "A",
"hide": false,
"intervalMs": 1000,
"maxDataPoints": 43200,
"refId": "B",
"type": "classic_conditions"
}
EOT
}
}
}
```
>Remark:
>
>So that scripting about is provisioning what exactly you need to do like in GUI for configure alert in Grafana, some basicly the alert need consider about K8s things. Like
>1. Metric Alert: (Common error in k8s or state of container, Status of resource inside K8s.)
>- Pod is High CPU (Line: 120)
>- Pod is High Mem (Line: 205)
>- Pod is Not-Ready State (Line: 291)
>- Job is failure (Line: 373)
>- OOMKilled - 137 Exit Code (Line: 457)
>- Abnormal Terminated - 134 Exit code (Line: 541)
>- ErrPullImages (Line: 625)
>- ServiceRestarted (Line: 709)
>
>2. Log Alert: (Triggered by log with error level )
>- Error Log Leve (Line: 800)
All that kind will push them notification via manager to your contact point, on above script, it will send the message to your team. So you need provide the authentication and URI webhook for provisioning succeed your alert.
**NOTICE: Remembering setup var.grafana_auth for terraform can access into grafana in format {token} or {admin:password}. [Refer in auth-parameter](https://registry.terraform.io/providers/grafana/grafana/latest/docs#auth)**
![](https://hackmd.io/_uploads/H1U3mEYZT.png)
![](https://hackmd.io/_uploads/BkXA7EtWT.png)
## Common Error in Kubernetes
>How the heck error of K8s you can prevent not just with alert and but also more about K8s. Understand to protect :sweat_smile:
![](https://hackmd.io/_uploads/BkGV4EYbp.png)
![image](https://hackmd.io/_uploads/B1YD0HvWC.png)
Related articles
- [10 Possible Errors on Kubernetes Deployments and Troubleshooting Steps](https://www.linkedin.com/pulse/10-possible-errors-kubernetes-deployments-steps-naveed-abdul-sattar)
- [Common Kubernetes Errors Made by Beginners](https://medium.com/@talhakhalid101/common-kubernetes-errors-made-by-beginners-274b50e18a01)
- [Kubernetes Error Codes: What They Mean and How to Fix Them](https://keentolearn.medium.com/kubernetes-error-codes-what-they-mean-and-how-to-fix-them-e63656927af3)
- [Troubleshooting Applications](https://kubernetes.io/docs/tasks/debug/debug-application/)
### 1. Pod Scheduling Failures
![image](https://hackmd.io/_uploads/S1oGJ8DZR.png)
**Error**: Pods not being scheduled or stuck in the pending state.
**Reason**
* There are no available nodes with the required resources(CPU, memory).
* The pod is waiting for its images to be pulled.
* The pod is waiting for its dependencies to be initialized like storage PV, PVC
* The pod is waiting for a specific node to become available.
**Troubleshoot**
* Using the `kubectl get events -n <namespace>` for check reason of pods in pending
* Check node resource availability and taints/tolerations configurations.
* Verify that the requested resources match the available resources on the nodes.
* Examine pod affinity and anti-affinity settings.
* Use the `kubectl describe -n <namespace> pod <pod-name>` command to get more information about the pod
### 2. ImagePullBackOff
![image](https://hackmd.io/_uploads/B1Phy8DW0.png)
**Error**: Kubernetes is unable to pull the container image for a pod
**Reason**
* The image repository is not accessible or the image does not exist.
* The image requires authentication and Kubernetes is not configured with the necessary credentials.
* The image is too large to be pulled over the network.
* Network connectivity issues.
**Troubleshoot**
* Check the container registry is accessible or not ? Does that image exists ?
* Make sure right credential is using
* If the image is too large, you can try splitting it into multiple smaller images or using a different image registry.
* Check for network connectivity issues between Kubernetes and the image registry.
### 3. Insufficient CPU/Memory
![image](https://hackmd.io/_uploads/BkxKJeUPbC.png)
**Error**: Pod or container cannot be scheduled because there are not enough CPU or memory resources available in the cluster to meet the specified resource requests
**Reason**
* The pod is over-provisioned.
* The cluster is under-resourced.
* There are too many pods running on the cluster.
* A node is unavailable due to a hardware or software issue.
**Troubleshoot**
* Adjust the resource requests and limits in the pod’s YAML file, or scale your cluster by adding more nodes if necessary.
* If the pod is over-provisioned, you can reduce the resource requests and limits of the pod.
* If the cluster is under-resourced, you can add more nodes to the cluster.
```yaml
resources:
requests:
memory: "256Mi"
cpu: "0.5"
limits:
memory: "512Mi"
cpu: "1"
```
* Check allocation and remaining CPU/Memory resources, by extension `kubectl resource-capacity -a`.
![image](https://hackmd.io/_uploads/ryzLxIDW0.png)
### 4. OOMkilled
![image](https://hackmd.io/_uploads/B1BwxIwZC.png)
**Error**: `OOMKilled` represent a kill event **(SIGKILL)** triggered to a process because someone in-charge suspected of the process to be the culprit of a memory surge that may lead to an out of memory event.
**Reason**
* Your application use much memory and over the limitation
* Memory leak or loop event occur
* Not enough memory for handling the process in container
**Troubleshoot**
* Check the log of container for define what reason cause this problems or use profiling application for detecting in kernal
* Increase memory limit in pod specifications
* Adjust memory requests (minimal threshold) and memory limits (maximal threshold) in your containers
### 5. CrashLoopBackOff
![image](https://hackmd.io/_uploads/SJhcxLD-A.png)
**Error**: Occurs when a pod is running, but one of its containers is restarting due to termination (usually the wrong way)
**Reason**
* It have exception in pods or container when deploy or running
* Resource overload or insufficient memory
* Live probe of pod is fail or not enough time to succeed
**Troubleshoot**
* With exception in pods, going to logs when running of pods to check reason why by `kubectl logs -n namespace pods/<namepod> -c container --tail 10` (tail is optional)
* With memory insufficient, that will be hard to understand why but you can check the reason by using the Grafana dashboard or `kubectl get events -n <namespace>`
* Liveprobe fail is the way condition you can check your web is not response 200 for test to ready or increase time liveprobe check for bring running pod. Using `kubectl describe -n <namespace> pods/<namepod>` to understand reason
### 6. Failure, Terminating, Unknown
![image](https://hackmd.io/_uploads/HkDdQLwZA.png)
**Error**: Occurs when meet the misconfiguration, node-pressure
**Reason**:
* Issues with Images (Not found the image)
* When pod is attempting to access i.e ConfigMap or Secrets but it is not found in namespace.
* Evicted by node-pressure policy: kubelet having terminated your pod and reclaim resources of nodes. Read more at Resource reservation
**Troubleshoot**
* With issue image or not found `ConfigMap` or `Secret`. Using `kubectl describe` or `kubectl get events` to understand reason and check what is wrong.
* With Evicted to failed, pretty hard state but you can scale or cordon node to make new schedule for pod
>***There are few reason on many case which make error for your application. With specify, If the problem occurs, please make sure to check all case can occur and research more with new problems*** :100:
## Conclusion
- That all blog for talking about using terraform applied alert for grafana, with alert will help you quickly define the error and know about state of system
- I have share some common error style of K8s, i meet them on my work. Sometimes It will make you feel struggle but believe me learning that will push you have tough mindset :smile:
- Many error can come to K8s, so alert is the priority you need to concern for setup that one. It will push productivity and effecient to your team.
## Reference
- [Terraform-Grafana](https://registry.terraform.io/providers/grafana/grafana/latest/docs)
- [Provisioning alert with Grafana](https://grafana.com/docs/grafana/latest/alerting/set-up/provision-alerting-resources/terraform-provisioning/)
- [API Alert Grafana](https://grafana.com/docs/grafana/latest/developers/http_api/alerting_provisioning/)
![](https://hackmd.io/_uploads/SykmUNYZT.png)