白奇剛
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # ADL final project ### Recommendation systems #### Aim: Find a combination of 1. and 2. that can achieve best accuracy. There are two broad types of Recommender systems: 1. Content-Based systems: These systems try to match users with items based on items’ content (genre, color, etc) and users’ profiles (likes, dislikes, demographic information, etc). For example, Youtube might suggest me cooking videos based on the fact that I’m a chef, and/or that I’ve watched a lot of baking videos in the past, hence utilizing the information it has about a video’s content and my profile. 2. Collaborative filtering: They rely on the assumption that similar users like similar items. Similarity measures between users and/or items are used to make recommendations. ### Recommended Recommendation repos 1. https://github.com/microsoft/recommenders 2. https://github.com/HarshdeepGupta/recommender_pytorch 3. https://github.com/SebastianRokholt/Hybrid-Recommender-System ### Used features #### Users user_id gender occupation_titles interests recreation_names #### Courses course_id course_name course_price teacher_id teacher_intro groups sub_groups topics course_published_at_local description will_learn required_tools recommended_background target_group ### Data stats **1. subgroups** 大約1.18%的使用者沒有購買課程。 Top 10 frequent subgroup | Support | itemsets | name | | -------- | -------- | - | |0.235940 | (51) | 更多職場技能 | |0.226724 | (59) | 職場溝通 | |0.176565 | (7) | 求職 | |0.171195 | (71) | 社會科學 | |0.166808 | (59, 71) | 職場溝通,社會科學 | |0.166113 | (3) | 平面設計 | |0.158372 | (66) | 數位行銷 | |0.154679 | (72) | 社群行銷 | |0.152223 | (1) | 更多生活品味 | |0.150257 | (50) | 個人品牌經營 | Top 10 frequent course | Support | itemsets | name | | -------- | -------- | - | |0.1437 | 5fc5ee1b08b74a6e3723abd2 | ҉唐鳳҉數位溝通社:就這樣把你增幅 | |0.103 | 5f7c210b1de7982fb413a3e9 | Today at Apple:和設計師馮宇拆解商業 LOGO 案例 | |0.0998 | 6030c9cd99e14cc2401e66b9 | 2021 驅動知識生態系論壇|Hahow 好學校 | |0.0857 | 5f7c209762ad22756c7a1c74 | Today at Apple:和攝影師 Ada Lin 用 iPhone 學習專業商品攝影 | |0.0734 | 60cb0a440dabda80019d5f7c | 遠距工作力:溝通協作到自我管理 | |0.0693 | 5f7c212262ad2203e77a1cc9 | Today at Apple:和攝影師 Paddy 用 iPhone 拍出商業空間形象照 | |0.0661 | 5ef099ab678184065fd4d426 | Seagate 講堂 平面設計師顏伯駿教你做履歷 | |0.0521 | 5f7c212262ad2203e77a1cc9, 5f7c209762ad22756c7a1c74 | |0.0487 | 5f7c210b1de7982fb413a3e9. 5f7c209762ad22756c7a1c74 | |0.0477 | 6059aee039f2512548c187c6 | Notion 實戰課程:打造專屬數位工作術 | |0.0412 | 5f7c210b1de7982fb413a3e9, 5f7c212262ad2203e77a1cc9 | |0.0408 | 5fc5ee1b08b74a6e3723abd2, 5f7c210b1de7982fb413a3e9 | ### Evaluation on validation set ```python import argparse from functools import partial import ml_metrics.average_precision as ap import pandas as pd map_50 = partial(ap.mapk, k=50) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--prediction", type=str) parser.add_argument("--truth", type=str) parser.add_argument("--col", type=str, default="subgroup", choices=["subgroup", "course_id"]) args = parser.parse_args() pred = pd.read_csv(args.prediction) truth = pd.read_csv(args.truth) truth_items = [] pred_items = [] for item in pred[args.col]: pred_items.append(item.split(" ")) for item in truth[args.col]: if isinstance(item, float): truth_items.append([]) else: truth_items.append(item.split(" ")) score = map_50(actual=truth_items, predicted=pred_items) print(score) ``` ```requirements ml_metrics ``` ### Data preprocessing **1. User data ** **2. Missing Value 處理** 以val_seen的ID為例,val_seen共有7748筆data gender missed:297 occupation missed:3548 interest missed:3 ReactionNames missed:3185 不會有全部feature都沒有的情形,會有只剩一種feature的情況 需要想一下missing value怎麼處理 (全部補同個value? knn補值? 先刪除miss 過多feature的row? ) ### Model/ Methodologies 1. Cosine similarities 考慮user_user之間的cosine similarties, 可以統計出相似的users (a) based on purchasing record user_item matrix (take training users for example): ![](https://i.imgur.com/s7vkxh6.png) From this matrix, we can directly calculate similarities among users. Notice that in practice we should get a sparse matrix. Also, we get a sparse similarity matrix. ![](https://i.imgur.com/A61RKpX.png) We have also computed several other matrices such as occupation similarties, and preference similiarities, but the recommendation results weren't good. 推薦的部份, 藉由user購買記錄相似程度,我們找出相似程度較高的users,並累計他們曾經購買的其他課程,再計算出前五十名推薦的課。缺點是:有許多user購買記錄相似,但只購買一堂課。 結果: val = 0.0112 (b)based on both occupation and purchasing 因此我們融入職業矩陣,把每個user相似程度進一步分化。我們採用的score of similarity是: $1*purchasing similarity + 0.2*occupation similarity$ 得到的結果為:validation = 0.0130 2. Collaborative filering (a) Algorithms: ALS / Bayesian ALS Bayesian https://github.com/benfred/implicit (b) Preference matrix: Purchasing records/ content similarity 除了購買記錄之外,我們也計算了該課出現在購買記錄的機率,並進行加權:結果如下。 ```python = pairwise sparse output: (0, 48) 0.005942670706129112 (0, 593) 0.07399207643905809 (1, 560) 0.6945933348870229 (2, 74) 0.013633185737590274 (2, 581) 0.03379165695642026 (2, 589) 0.0749242600792352 (3, 416) 0.12363085527848913 (4, 360) 0.007107900256350507 (5, 424) 0.23386157072944522 (5, 425) 0.46038219529245955 (5, 426) 0.2555348403635643 (5, 533) 1.0000000000001572 (5, 560) 0.6945933348870229 (6, 425) 0.46038219529245955 (6, 462) 0.06804940573292902 (7, 246) 0.028897692845490434 (7, 533) 1.0000000000001572 (8, 606) 0.009438359356793284 (9, 652) 0.11745513866231579 (10, 424) 0.23386157072944522 (10, 502) 0.482288510836619 (10, 533) 1.0000000000001572 (10, 624) 0.1747844325332139 (11, 314) 0.12106735026800208 (11, 372) 0.01829410393847582 : : (59719, 630) 0.015497553017944492 (59720, 657) 0.012584479142391027 (59721, 644) 0.1769983686786348 (59722, 595) 0.04218130971801424 (59723, 638) 0.12537869960382125 (59724, 87) 0.018760195758564375 (59724, 580) 0.06024236774644572 (59725, 613) 0.12712654392915354 (59725, 638) 0.12537869960382125 (59726, 409) 0.013749708692612413 (59727, 599) 0.3323234677231445 (59728, 613) 0.12712654392915354 (59729, 652) 0.11745513866231579 (59730, 353) 0.01829410393847582 (59731, 632) 0.07422512234910236 (59732, 112) 0.053367513400139545 (59732, 531) 0.1789792589140114 (59732, 583) 0.032509904451176734 (59733, 426) 0.2555348403635643 (59733, 599) 0.3323234677231445 (59734, 661) 0.006292239571195531 (59735, 500) 0.596364483803325 (59735, 501) 0.7170822652063037 (59735, 502) 0.482288510836619 (59736, 589) 0.0749242600792352 ``` (c)Results on seen course | | ALS | Bayesian | | -------- | -------- | -------- | | Validation | 0.04750 |0.04432| | kaggle | 0.03370 |0.03227| 2. Content-based filtering Modules: gensim bert-key word2vec models pretrained from wiki chinese datasets (a) For courses, we take the target group and subgroups into account. ```python= course_key_dict = {} i = 0 for course in tqdm(course_data['target_group']): i += 1 #first we analyze the target group text.... key_list = [] if course == 0: course_key_dict[i] = [] else: #print(course) try: if len(course)>10: keybert_list = kw_extractor.generate_keywords(course,top_k=2,rank_methods="mmr")[0] else: keybert_list = kw_extractor.generate_keywords(course,top_k=1,rank_methods="mmr")[0] course_key_dict[i] = keybert_list except: course_key_dict[i] = [] ``` 我們可以針對每個user去計算他對課程的score,藉由word vector上的距離遠近。 ```python = import pandas as pd tests = pd.read_csv(file_test) content_based_dict = {} for user_id in tqdm(tests['user_id']): c_list = data[user_id] for i in range(len(c_list)): try: text_score = 1/c_list[i] except: text_score = 1000.0 c_list[i] = text_score*purchasing_dict_course[i] res = sorted(range(len(c_list)), key = lambda sub: data[user_id][sub])[-50:] id_list = num_to_id(res) content_based_dict[user_id] = id_list ``` (b) User For user's content, we extract the subgroup data that is given in the subgroups they chose. (c)Calculating score (or preference) Using gensim model to calculate the score between user and course. ```python = model = gensim.models.KeyedVectors.load_word2vec_format('y_360W_cbow_2D_300dim_2020v1.bin',unicode_errors='ignore',binary=True) ``` The model is downlaoded from http://nlp.tmu.edu.tw/word2vec/index.html (d)Results on seen course | | +ALS | +Bayesian | Pure content based | | -------- | -------- | -------- |-------- | | Validation | 0.04704 |0.04602|0.01102| | kaggle | 0.03506 |0.03237|X| 3. Naive Bays 在Hahow提供的資料中,總共有四個資料用來表示一個使用者,分別是:性別、職業、 興趣、喜好,利用這些資訊可以計算條件機率 p(課程|性別), p(課程|頭銜), … 及 p(課程子類別|性別), p(課程子類別|頭銜), … 因為職業、興趣、喜好都可能有不只一個項目,當出現複選時,我使用幾何平均來估計 條件機率。因為有些使用者的興趣並沒有出現在課程子類別中,所以我額外統計了課程 類別的條件機率做為參考。 我們可以使用這些條件機率來進行排序,作為推薦的結果。 ``` p(course|user) = p(course|gender) * \ p(course|occupation_titles) * \ p(course|interests) * \ p(course|group) * \ p(course|recreation_names) * \ p(course) p(subgrooup|user) = p(subgrooup|gender) * \ p(subgrooup|occupation_titles) * \ p(subgrooup|interests) * \ p(subgrooup|group) * \ p(subgrooup|recreation_names) * \ p(subgrooup) ``` 我沒有使用p(course),p(subgrooup)這一項(因為忘了放...再幫我想一個理由) $$p(course|interests)={\prod{p(course|interests_{n})}}^{1/n}$$ | | Seen Course | Seen subgroup |Unseen course |Unseen subgroup | | -------- | -------- | -------- | - | - | | val | 0.0621 |0.2268 |0.0687 | 0.1801 | | kaggle | 0.0374 |0.21316|0.05227|0.17749 | 從validation 及kaggle的結果可以發現seen course表現最差,因為naive bays 只會推薦使用者已經看過得課程,所以結果很差。 4. Two Tower Method 關於深度學習部分之應用,我們嘗試了雙塔模型,顧名思義即為有兩個model所組成的方法。如下圖所示,由user feature encoder與course feature encoder所組成。其基本想法為利用深度模型對於各個feature encoding的能力,將user feature與course feature投影到同一個embedding space, 並期許若某個course應被某個user所購買,則他們的relevance應該要相對高。而這個relevance可以用各種方式計算,如cosine similarity......。在本篇work中我們以dot product作為計算similarity的metric。 ![](https://i.imgur.com/POZgq2h.png) 關於User encoder, 我們將其興趣與職業等特性轉化為one hot vector後採用2層的linear layer,最後將其output成256維的embedding。 ![](https://i.imgur.com/6sBdImk.png) 關於course encoder, 由於其含有大量文字敘述,我們以bert-base-chinese作為pretrain,首先先將descriptions以bert 做tokenlization,隨後送進pretrained bert與兩層linear layer,最後同樣output 256維的向量。 ![](https://i.imgur.com/uNoHQJV.png) 關於loss function,由於在這個data框架下,每一個training pair(user 與其對應之course)並沒有負樣本(negative sample),因此直接訓練的話,model可以把traing的分數最大化,達不到訓練效果。因此我們採用了in-batch negative sampling,將同一個batch內,除了該user本身對應的course以外都視為負樣本,並且將整個pair組成matrix的形式,在計算similarity socre時,可以直接以矩陣相乘來計算分數,加速計算。 ![](https://i.imgur.com/WCQFhPU.png) ![](https://i.imgur.com/gWhZbSA.png) ```python = class customLoss(nn.Module): def forward(self, courseEmb, userEmb, label): mat = torch.matmul(userEmb, courseEmb.transpose(0, 1)) probTensor = [] for l in label: probTensor.append(self.prob_lookUp[l]) probTensor = torch.tensor(probTensor).to(device) mat = mat - probTensor[:,None] mat = mat.to(device) true_labels = torch.tensor(np.arange(len(label))).to(device) loss = nn.CrossEntropyLoss() l = loss(mat, true_labels) return l ``` 在testing方面,我們會先將700餘個course全數通過course encoder,轉化為256維向量並保存。在每一個user feature通過user encoder時,從course embeddings中尋找l2 norm 最小的一群courses作為其candidate courses。 在結果方面,我們遇到了loss 沒有辦法有效下降的問題,造成在validation set上的表現不佳。以目前的結果來說,並沒有辦法超越Naive bays method。 | | Seen Course | Unseen course | -------- | -------- | -------- | val | 0.0215 |0.0197

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully