Meta'omics - Ab-V5

Ferrarezi et al. (2023): https://doi.org/10.3389/fpls.2023.1172839

Background

The beneficial plant-microbes association has been widely explored with the purpose of understanding the mechanisms involved in this interaction, in order to develop bioinoculants for agriculture aiming at sustainability and reduction of chemical inputs use. Plant growth promoting bacteria (PGPBs) have been reported as an interesting alternative to mineral fertilizers for a range of crops. The genus Azospirillum has shown potential in plant growth promotion for maize. However, the lack of holistic comprehension about PGPBs-plant-native soil microbiota can lead to inconsistency of results in field conditions. Recent ecological theories revealed that plant microbiomes are organized as microbial hubs with keystone species and helpers. The objective of this work is to characterize the microbial community associated with a commercial maize genotype (30A37PW) under influence of the potential keystone PGPB A. brasilense Ab-v5 to support the original development of a synthetic minimum microbiome including this strain as keystone for plant growth promotion. Aiming to understand the PGPB-plant-microbiome system, we conducted a greenhouse experiment in which the synergistic effect of Ab-V5 and soil native microbial community were evaluated through soil and rhizosphere metataxonomics, metagenomics and plant phenomics. Our results revealed that maize seed bacterization with the PGPB Ab-V5 promotes plant growth. This effect is boosted by the interaction with specific microbial groups present in the soil native community. The strain Ab-V5 persists in the maize rhizosphere until 25 days after sowing. In order to understand which microbial groups are important during the interaction Ab-V5-plant-native soil microbial community, 16S rDNA metataxonomics and metagenomics analysis will be conducted in maize soil and rhizosphere samples. This unprecedented omics approach for the holistic view of the complex system composed by inoculant-plant-microbiota and data integration will allow the development of new strategies for optimization of plant biostimulants recommendation with enhanced efficiency for establishment in the field.

Useful R packages:

library("ExpDes.pt")
library("agricolae")
library("laercio")
library("ggplot2")
library("nortest")
library("car")
library("ggfortify")
library("doBy")
library("dplyr")
library("tibble")
library("tidyverse")
library("ggpubr")
library("rstatix")
library("tinytex")
library("factoextra")
library("wesanderson")
require(gridExtra)
require(patchwork)
library("devtools")
library("factoextra")
library(RColorBrewer)
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("mixOmics")

library(mixOmics)

Sparse Partial Least Squares regression (PLS) for discrimination analysis (sPLS-DA, mixOmics)

de<-read.csv("WinRhizo_julho2021 - Dilu-extin_AbV5.csv")
splsda_de<-splsda(de[,4:50],de$Tratamento,keepX=47)
splsda<-plotIndiv(splsda_de,ind.names=TRUE,legend=TRUE,ellipse=TRUE,
star=TRUE,title='sPLS-DA',X.label='PLS-DA 1',Y.label='PLS-DA 2')

splsda<-plotIndiv(splsda_de,pch.levels=c("NS+Ab-V5", "NS 10⁻³+Ab-V5", 
"NS 10⁻⁶+Ab-V5", "NS 10⁻⁹+Ab-V5", "SS+Ab-V5"),col.per.group=c("chocolate1", 
"coral3", "chartreuse4","deepskyblue4", "lightcoral"),ind.names=TRUE,legend=TRUE,
ellipse=TRUE,star=TRUE,style="ggplot2",title='sPLS-DA',X.label='PLS-DA 1',
Y.label='PLS-DA 2',legend.title="Treatments")


splsda_de$explained_variance
$X
   comp 1    comp 2 
0.4839414 0.1361531 

$Y
   comp 1    comp 2 
0.2508990 0.2389356

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

Figure 1. Sparse partial least squares discriminant analysis (sPLS-DA) among five treatments based on plant phenotypic traits 25 days after sowing bacterialized seeds. NS: Natural soil (microbial community); SS: Sterilized soil; NS 10⁻³+Ab-V5: dilution 10⁻³ of natural soil; NS 10⁻⁶+Ab-V5: dilution 10⁻⁶ of natural soil; NS 10⁻⁹+Ab-V5: dilution 10⁻⁹ of natural soil.

Descriptive analyses of experimental data

shapiro.test checks the normality of the regression residuals

Ho: the regression residuals follow a normal distribution
Ha: the regression residuals do not follow a normal distribution

Significance alpha: 0.05

SDM: Shoot dry matter (g)
(shapiro.test(de$SDM_g))

Shapiro-Wilk normality test
data: de$SDM_g
W = 0.96468, p-value = 0.08933

leveneTest checks whether the homogeneity of variance between groups is even

Ho: the groups show homogeneity of variance
Ha: the groups do not show homogeneity of variance

Significance alpha: 0.05

(leveneTest(SDM_g ~ Tratamento, de))

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 4 6.2562 0.0003***
53
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
model.de.sdm<-aov(SDM_g ~ Tratamento, data=de, weights=1/SDM_g)
anova(model.de.sdm)

Analysis of Variance Table
Response: SDM_g

Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 12.1351 3.03378 21.509 1.384e-10 ***
Residuals 53 7.4756 0.14105
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Test for significant mean differences among groups

LSD test is a non-parametric test

out.de.sdm<-LSD.test(model.de.sdm, c("Tratamento"), main="SDM_g ~ Tratamento, console=TRUE")
out.de.sdm$groups
SDM_g groups
SS+Ab-V5 2.129042 a
NS 10⁻⁹+Ab-V5 1.913036 ab
NS 10⁻³+Ab-V5 1.701350 b
NS 10⁻⁶+Ab-V5 1.604918 b
NS+Ab-V5 0.739400 c
de.sdm.groups<-out.de.sdm$groups
de.sdm.groups["Tratamento"]<-c("SS+Ab-V5", "NS 10⁻⁹+Ab-V5", "NS 10⁻³+Ab-V5", 
"NS 10⁻⁶+Ab-V5", "NS+Ab-V5")
de.sdm.means<-out.de.sdm$means
de$Tratamento<-factor(de$Tratamento,ordered=TRUE,levels=c("NS+Ab-V5",
"NS 10⁻³+Ab-V5","NS 10⁻⁶+Ab-V5","NS 10⁻⁹+Ab-V5","SS+Ab-V5"))

de.sdm<-ggplot(data=de, mapping=aes(x=Tratamento, y=SDM_g,color=Tratamento))+
geom_jitter(data=de,position=position_jitter(0.2))+
scale_colour_manual(values=c("deepskyblue4","chocolate1", "coral3", "chartreuse4","lightcoral"))+
geom_boxplot(width=0.3) + geom_text(data=de.sdm.groups, aes(label=groups), 
nudge_y = 0.8, size=5, hjust=1, color="black") + theme_classic() + 
theme(legend.title=element_blank())+ labs(y="Shoot dry matter (g)") + theme(legend.position = "none") + 
theme(axis.title.x=element_blank(), axis.text.y=element_text(size=10), 
text = element_text(size = 10))
de.sdm
de.sdm+coord_flip()
png("de_sdm.png")
de.sdm
dev.off()

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

RDM: Root dry matter (mg)
(shapiro.test(de$RDM_mg))

Shapiro-Wilk normality test
data: de$RDM_mg
W = 0.97529, p-value = 0.2823

(leveneTest(RDM_mg ~ Tratamento, de))

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 4 0.9715 0.4309
53
model.de.rdm<-aov(RDM_mg ~ Tratamento, data=de)
anova(model.de.rdm)

Analysis of Variance Table
Response: RDM_mg

Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 5208.2 1302.05 2.4043 0.06109 .
Residuals 53 28702.3 541.55
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
out.de.rdm<-LSD.test(model.de.rdm, c("Tratamento"), main="RDM_mg ~ Tratamento, console=TRUE")

out.de.rdm$groups
RDM_mg groups
NS 10⁻³+Ab-V5 90.82500 a
NS 10⁻⁶+Ab-V5 81.50909 ab
SS+Ab-V5 73.53333 ab
NS+Ab-V5 67.70000 b
NS 10⁻⁹+Ab-V5 64.96364 b
de.rdm.groups<-out.de.rdm$groups
de.rdm.groups["Tratamento"]<-c("NS 10⁻³+Ab-V5", "NS 10⁻⁶+Ab-V5", "SS+Ab-V5", "NS+Ab-V5", "NS 10⁻⁹+Ab-V5")
de.rdm.means<-out.de.rdm$means

de.rdm<-ggplot(data=de, mapping=aes(x=Tratamento, y=RDM_mg,color=Tratamento))+geom_jitter(data=de,position=position_jitter(0.2))+scale_colour_manual(values=c("deepskyblue4","chocolate1", "coral3", "chartreuse4","lightcoral")) + geom_boxplot(width=0.3) + geom_text(data=de.rdm.groups, aes(label=groups), nudge_y = 40, size=5, hjust=1, color="black") + theme_classic() + theme(legend.title=element_blank())+ labs(y="Root dry matter (mg)") + theme(legend.position = "none") + theme(axis.title.x=element_blank(), axis.text.y=element_text(size=10), text = element_text(size = 10))

de.rdm+coord_flip()

Shoot to root ratio (g.mg⁻¹)
(shapiro.test(de$ShootRoot_ratio))
​Shapiro-Wilk normality test

data: de$ShootRoot_ratio
W = 0.95436, p-value = 0.02895

(leveneTest(ShootRoot_ratio ~ Tratamento, de))

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 4 3.231 0.01908 *
53
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
model.de.srr<-aov(ShootRoot_ratio ~ Tratamento, data=de, weights=1/ShootRoot_ratio)
anova(model.de.srr)

Analysis of Variance Table
Response: ShootRoot_ratio

Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 159.32 39.829 17.832 2.494e-09 ***
Residuals 53 118.38 2.234
out.de.srr<-LSD.test(model.de.srr,c("Tratamento"), main="ShootRoot_ratio ~ Tratamento, console=TRUE")
out.de.srr$groups
ShootRoot_ratio groups
NS 10⁻⁹+Ab-V5 32.36755 a
SS+Ab-V5 30.06475 b
NS 10⁻⁶+Ab-V5 20.26033 c
NS 10⁻³+Ab-V5 19.43915 c
NS+Ab-V5 11.64676 d
de.srr.groups<-out.de.srr$groups
de.srr.groups["Tratamento"]<-c("NS 10⁻⁹+Ab-V5", "SS+Ab-V5", "NS 10⁻⁶+Ab-V5", "NS 10⁻³+Ab-V5", "NS+Ab-V5")
de.srr.means<-out.de.srr$means

de.srr<-ggplot(data=de, mapping=aes(x=Tratamento, y=ShootRoot_ratio, color=Tratamento))+geom_jitter(data=de, position=position_jitter(0.2))+scale_colour_manual(values=c("deepskyblue4","chocolate1", "coral3", "chartreuse4","lightcoral")) + geom_boxplot(width=0.3) + geom_text(data=de.srr.groups, aes(label=groups),nudge_y=10, size=5,hjust=1.5,color="black")+theme_classic() + theme(legend.title=element_blank())+ labs(y="Shoot/root ratio") +theme(legend.position = "none") + theme(axis.title.x=element_blank(), axis.text.y=element_text(size=10), text = element_text(size = 10))

SRL: specific root length (g.cm⁻¹)
(shapiro.test(de$SRL))

Shapiro-Wilk normality test

data: de$SRL
W = 0.93665, p-value = 0.004638

(leveneTest(SRL ~ Tratamento, de))
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 4 3.6528 0.01061 *
53
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
model.de.srl<-aov(SRL ~ Tratamento, data=de, weights=1/SRL)
anova(model.de.srl)

Analysis of Variance Table
Response: SRL
| | Df | Sum Sq |Mean Sq |F value | Pr(>F)|
|Tratamento | 4 |3.1886| 0.79715 | 4.0861| 0.005843 **|
|Residuals |53 |10.3397 |0.19509|

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
out.de.srl<-LSD.test(model.de.srl,c("Tratamento"), main="SRL ~ Tratamento, console=TRUE")
out.de.srl$groups
SRL groups
NS 10⁻⁶+Ab-V5 4.289778 a
SS+Ab-V5 3.774809 b
NS 10⁻⁹+Ab-V5 3.712263 bc
NS 10⁻³+Ab-V5 3.369935 c
NS+Ab-V5 2.746755 d
de.srl.groups<-out.de.srl$groups
de.srl.groups["Tratamento"]<-c("NS 10⁻⁶+Ab-V5", "SS+Ab-V5", "NS 10⁻⁹+Ab-V5", "NS 10⁻³+Ab-V5", "NS+Ab-V5")
de.srl.means<-out.de.srl$means

de.srl<-ggplot(data=de,mapping=aes(x=Tratamento, y=SRL,color=Tratamento))+geom_jitter(data=de, position=position_jitter(0.2))+scale_colour_manual(values=c("deepskyblue4","chocolate1", "coral3", "chartreuse4","lightcoral")) + geom_boxplot(width=0.3) + geom_text(data=de.srl.groups,aes(label=groups),nudge_y=1.5, size=5,hjust=1.5,color="black")+theme_classic() + theme(legend.title=element_blank())+ labs(y="Specific root length (mg.cm⁻¹)")+theme(legend.position = "none") + theme(axis.title.x=element_blank(), axis.text.y=element_text(size=10), text = element_text(size = 10))

SRSA: specific root surface area (g.cm⁻²)

(shapiro.test(de$SRSA))

Shapiro-Wilk normality test
data: de$SRSA
W = 0.85598, p-value = 6.258e-06

(leveneTest(SRSA ~ Tratamento, de))

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 4 4.0478 0.006157 **
53
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
model.de.srsa<-aov(SRSA ~ Tratamento, data=de, weights=1/SRSA)
anova(model.de.srsa)

Analysis of Variance Table
Response: SRSA

Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 0.46398 0.115994 5.4424 0.0009547 ***
Residuals 53 1.12958 0.021313
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
out.de.srsa<-LSD.test(model.de.srsa,c("Tratamento"), main="SRSA ~ Tratamento, console=TRUE")
out.de.srsa$groups
SRSA groups
NS 10⁻⁶+Ab-V5 0.7738787 a
NS 10⁻⁹+Ab-V5 0.6468011 b
SS+Ab-V5 0.6154526 bc
NS 10⁻³+Ab-V5 0.6064365 bc
NS+Ab-V5 0.5040541 c
de.srsa.groups<-out.de.srsa$groups
de.srsa.groups["Tratamento"]<-c("NS 10⁻⁶+Ab-V5", "NS 10⁻⁹+Ab-V5", "SS+Ab-V5", "NS 10⁻³+Ab-V5", "NS+Ab-V5")
de.srsa.means<-out.de.srsa$means

de.srsa<-ggplot(data=de,mapping=aes(x=Tratamento, y=SRSA,color=Tratamento))+geom_jitter(data=de,position=position_jitter(0.2))+scale_colour_manual(values=c("deepskyblue4","chocolate1", "coral3", "chartreuse4","lightcoral")) + geom_boxplot(width=0.3) + geom_text(data=de.srsa.groups,aes(label=groups),nudge_y=0.5, size=5,hjust=1.5,color="black")+theme_classic() + theme(legend.title=element_blank())+ labs(y="Specific root surface area (mg.cm⁻²)")+theme(legend.position = "none") + theme(axis.title.x=element_blank(), axis.text.y=element_text(size=10), text = element_text(size = 10))

Root length (cm)

(shapiro.test(de$Length.cm.))

Shapiro-Wilk normality test
data: de$Length.cm.
W = 0.97292, p-value = 0.2196

(leveneTest(Length.cm. ~ Tratamento, de))

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 4 0.6285 0.6443
53
model.de.leng<-aov(Length.cm. ~ Tratamento, data=de)
anova(model.de.leng)

Analysis of Variance Table
Response: Length.cm.

Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 131004 32751 4.47 0.003468 **
Residuals 53 388324 7327
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
out.de.leng<-LSD.test(model.de.leng,c("Tratamento"),main="Length.cm. ~ Tratamento, console=TRUE")
out.de.leng$groups
Length cm groups
NS 10⁻⁶+Ab-V5 318.4564 a
NS 10⁻³+Ab-V5 301.2228 a
SS+Ab-V5 278.6917 a
NS 10⁻⁹+Ab-V5 245.8799 ab
NS+Ab-V5 184.6067 b
de.leng.groups<-out.de.leng$groups
de.leng.groups["Tratamento"]<-c("NS 10⁻⁶+Ab-V5", "NS 10⁻³+Ab-V5", "SS+Ab-V5", "NS 10⁻⁹+Ab-V5", "NS+Ab-V5")
de.leng.means<-out.de.leng$means

de.leng<-ggplot(data=de,mapping=aes(x=Tratamento,y=Length.cm.,color=Tratamento))+geom_jitter(data=de,position=position_jitter(0.2))+scale_colour_manual(values=c("deepskyblue4","chocolate1", "coral3", "chartreuse4","lightcoral")) + geom_boxplot(width=0.3) + geom_text(data=de.leng.groups, aes(label=groups),nudge_y=100,size=5,hjust=1.5,color="black")+theme_classic()+theme(legend.title=element_blank())+ labs(y="Root length (cm)")+theme(legend.position = "none") + theme(axis.title.x=element_blank(), axis.text.y=element_text(size=10), text = element_text(size = 10))

Joining images

part1<-ggarrange(de.sdm,de.rdm,de.srl,de.srsa,de.leng,de.vol,labels=c("A","B","C","D","E","F"),ncol=2,nrow=3)
ggarrange(splsda$graph,part1,ncol=2)


Figure 1. Effect of soil native microbial community grandient amended with Azospirillum brasilense Ab-V5 on maize phenotypic traits. A. Sparse partial least squares discriminant analysis (sPLS-DA) among five treatments based on plant phenotypic traits 25 days after sowing bacterialized seeds. B-G: Maize phenotypic traits evaluated 25 days after sowing bacterialized seeds. NS: Natural soil (microbial community); SS: Sterilized soil; NS 10⁻³+Ab-V5: dilution 10⁻³ of natural soil; NS 10⁻⁶+Ab-V5: dilution 10⁻⁶ of natural soil; NS 10⁻⁹+Ab-V5: dilution 10⁻⁹ of natural soil.


qPCR quantification of 16S rRNA gene and Ab-V5

Soil samples

Soil and rhizosphere samples


Community profiling with Divisive Amplicon Denoising Algorithm 2 - DADA2

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("dada2")

library(dada2); packageVersion("dada2")
Loading required package: Rcpp
[1] ‘1.24.0’ (em 25 de agosto de 2022)
library(ShortRead); packageVersion("ShortRead")
Loading required package: BiocGenerics
Loading required package: parallel
...
setwd("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/CN_samples/")
path_CN<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/CN_samples")
sort(list.files(path_CN))

"SA1CN_S49_L001_R1_001.fastq" "SA1CN_S49_L001_R2_001.fastq"
"SA2CN_S50_L001_R1_001.fastq" "SA2CN_S50_L001_R2_001.fastq"
"SA3CN_S51_L001_R1_001.fastq" "SA3CN_S51_L001_R2_001.fastq"
"SA4CN_S52_L001_R1_001.fastq" "SA4CN_S52_L001_R2_001.fastq"
"SE1CN_S53_L001_R1_001.fastq" "SE1CN_S53_L001_R2_001.fastq"
"SE2CN_S54_L001_R1_001.fastq" "SE2CN_S54_L001_R2_001.fastq"
"SE3CN_S55_L001_R1_001.fastq" "SE3CN_S55_L001_R2_001.fastq"
"SE4CN_S56_L001_R1_001.fastq" "SE4CN_S56_L001_R2_001.fastq"

fnFs_CN <- sort(list.files(path_CN, pattern="_R1_001.fastq"))
fnRs_CN <- sort(list.files(path_CN, pattern="_R2_001.fastq"))
sampleNames_CN <- sapply(strsplit(basename(fnFs_CN), "_"), `[`, 1)
sampleNames_CN

"SA1CN" "SA2CN" "SA3CN" "SA4CN" "SE1CN" "SE2CN" "SE3CN" "SE4CN"

fnFs_CN<-file.path(path_CN,fnFs_CN)
fnRs_CN<-file.path(path_CN,fnRs_CN)
png("Fastq_CN_F.png")
plotQualityProfile(fnFs_CN)
dev.off()

Bulk soil samples collected when the native community microbial grandient was inoculated in pots with irradiated soil - Forward reads

png("Fastq_CN_R.png")
plotQualityProfile(fnRs_CN)
dev.off()

Bulk soil samples collected when the native community microbial grandient was inoculated in pots with irradiated soil - Reverse reads

setwd("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/0DAP_samples/")
path_0D<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/0DAP_samples")
sort(list.files(path_0D))

"SA10DAP_S57_L001_R1_001.fastq" "SA10DAP_S57_L001_R2_001.fastq"
"SA20DAP_S58_L001_R1_001.fastq" "SA20DAP_S58_L001_R2_001.fastq"
"SA30DAP_S59_L001_R1_001.fastq" "SA30DAP_S59_L001_R2_001.fastq"
"SA40DAP_S60_L001_R1_001.fastq" "SA40DAP_S60_L001_R2_001.fastq"
"SB10DAP_S61_L001_R1_001.fastq" "SB10DAP_S61_L001_R2_001.fastq"
"SB20DAP_S62_L001_R1_001.fastq" "SB20DAP_S62_L001_R2_001.fastq"
"SB30DAP_S63_L001_R1_001.fastq" "SB30DAP_S63_L001_R2_001.fastq"
"SB40DAP_S64_L001_R1_001.fastq" "SB40DAP_S64_L001_R2_001.fastq"
"SC10DAP_S65_L001_R1_001.fastq" "SC10DAP_S65_L001_R2_001.fastq"
"SC20DAP_S66_L001_R1_001.fastq" "SC20DAP_S66_L001_R2_001.fastq"
"SC30DAP_S67_L001_R1_001.fastq" "SC30DAP_S67_L001_R2_001.fastq"
"SC40DAP_S68_L001_R1_001.fastq" "SC40DAP_S68_L001_R2_001.fastq"
"SD10DAP_S69_L001_R1_001.fastq" "SD10DAP_S69_L001_R2_001.fastq"
"SD20DAP_S70_L001_R1_001.fastq" "SD20DAP_S70_L001_R2_001.fastq"
"SD30DAP_S71_L001_R1_001.fastq" "SD30DAP_S71_L001_R2_001.fastq"
"SD40DAP_S72_L001_R1_001.fastq" "SD40DAP_S72_L001_R2_001.fastq"
"SE10DAP_S73_L001_R1_001.fastq" "SE10DAP_S73_L001_R2_001.fastq"
"SE20DAP_S74_L001_R1_001.fastq" "SE20DAP_S74_L001_R2_001.fastq"
"SE30DAP_S75_L001_R1_001.fastq" "SE30DAP_S75_L001_R2_001.fastq"
"SE40DAP_S76_L001_R1_001.fastq" "SE40DAP_S76_L001_R2_001.fastq"

fnFs_0D<-sort(list.files(path_0D, pattern="_R1_001.fastq"))
fnRs_0D<-sort(list.files(path_0D, pattern="_R2_001.fastq"))
sampleNames_0D<-sapply(strsplit(basename(fnFs_0D), "_"), `[`, 1)
sampleNames_0D

"SA10DAP" "SA20DAP" "SA30DAP" "SA40DAP" "SB10DAP" "SB20DAP" "SB30DAP"
"SB40DAP" "SC10DAP" "SC20DAP" "SC30DAP" "SC40DAP" "SD10DAP" "SD20DAP"
"SD30DAP" "SD40DAP" "SE10DAP" "SE20DAP" "SE30DAP" "SE40DAP"

fnFs_0D<-file.path(path_0D,fnFs_0D)
fnRs_0D<-file.path(path_0D,fnRs_0D)
png("Fastq_0D_F.png")
plotQualityProfile(fnFs_0D)
dev.off()

Bulk soil samples collected when on the same day of seed sowing - Forward reads

png("Fastq_0D_R.png")
plotQualityProfile(fnRs_0D)
dev.off()

Bulk soil samples collected when on the same day of seed sowing - Reverse reads

setwd("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/15DAP_rhizos_samples")
path_r15D<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/15DAP_rhizos_samples")
sort(list.files(path_r15D))

"RiA115DAP_S117_L001_R1_001.fastq" "RiA115DAP_S117_L001_R2_001.fastq"
"RiA215DAP_S118_L001_R1_001.fastq" "RiA215DAP_S118_L001_R2_001.fastq"
"RiA315DAP_S119_L001_R1_001.fastq" "RiA315DAP_S119_L001_R2_001.fastq"
"RiA415DAP_S120_L001_R1_001.fastq" "RiA415DAP_S120_L001_R2_001.fastq"
"RiB115DAP_S121_L001_R1_001.fastq" "RiB115DAP_S121_L001_R2_001.fastq"
"RiB215DAP_S122_L001_R1_001.fastq" "RiB215DAP_S122_L001_R2_001.fastq"
"RiB315DAP_S123_L001_R1_001.fastq" "RiB315DAP_S123_L001_R2_001.fastq"
"RiB415DAP_S124_L001_R1_001.fastq" "RiB415DAP_S124_L001_R2_001.fastq"
"RiC115DAP_S125_L001_R1_001.fastq" "RiC115DAP_S125_L001_R2_001.fastq"
"RiC215DAP_S126_L001_R1_001.fastq" "RiC215DAP_S126_L001_R2_001.fastq"
"RiC315DAP_S127_L001_R1_001.fastq" "RiC315DAP_S127_L001_R2_001.fastq"
"RiC415DAP_S128_L001_R1_001.fastq" "RiC415DAP_S128_L001_R2_001.fastq"
"RiD115DAP_S129_L001_R1_001.fastq" "RiD115DAP_S129_L001_R2_001.fastq"
"RiD215DAP_S130_L001_R1_001.fastq" "RiD215DAP_S130_L001_R2_001.fastq"
"RiD315DAP_S131_L001_R1_001.fastq" "RiD315DAP_S131_L001_R2_001.fastq"
"RiD415DAP_S132_L001_R1_001.fastq" "RiD415DAP_S132_L001_R2_001.fastq"
"RiE115DAP_S133_L001_R1_001.fastq" "RiE115DAP_S133_L001_R2_001.fastq"
"RiE215DAP_S134_L001_R1_001.fastq" "RiE215DAP_S134_L001_R2_001.fastq"
"RiE315DAP_S135_L001_R1_001.fastq" "RiE315DAP_S135_L001_R2_001.fastq"
"RiE415DAP_S136_L001_R1_001.fastq" "RiE415DAP_S136_L001_R2_001.fastq"

fnFs_r15D<-sort(list.files(path_r15D,pattern="_R1_001.fastq"))
fnRs_r15D<-sort(list.files(path_r15D,pattern="_R2_001.fastq"))
sampleNames_r15D<-sapply(strsplit(basename(fnFs_r15D),"_"), `[`, 1)
sampleNames_r15D

"RiA115DAP" "RiA215DAP" "RiA315DAP" "RiA415DAP" "RiB115DAP" "RiB215DAP"
"RiB315DAP" "RiB415DAP" "RiC115DAP" "RiC215DAP" "RiC315DAP" "RiC415DAP"
"RiD115DAP" "RiD215DAP" "RiD315DAP" "RiD415DAP" "RiE115DAP" "RiE215DAP"
"RiE315DAP" "RiE415DAP"

fnFs_r15D<-file.path(path_r15D,fnFs_r15D)
fnRs_r15D<-file.path(path_r15D,fnRs_r15D)
png("Fastq_r15D_F.png")
dev.off()

Rhizospheric soil samples collected 15 days after seed sowing - Forward reads

png("Fastq_r15D_R.png")
plotQualityProfile(fnRs_r15D)
dev.off()

Rhizospheric soil samples collected 15 days after seed sowing - Reverse reads

setwd("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/15DAP_soil_samples/")
path_s15D<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/15DAP_soil_samples")
sort(list.files(path_s15D))

"SA115DAP_S77_L001_R1_001.fastq" "SA115DAP_S77_L001_R2_001.fastq"
"SA215DAP_S78_L001_R1_001.fastq" "SA215DAP_S78_L001_R2_001.fastq"
"SA315DAP_S79_L001_R1_001.fastq" "SA315DAP_S79_L001_R2_001.fastq"
"SA415DAP_S80_L001_R1_001.fastq" "SA415DAP_S80_L001_R2_001.fastq"
"SB115DAP_S81_L001_R1_001.fastq" "SB115DAP_S81_L001_R2_001.fastq"
"SB215DAP_S82_L001_R1_001.fastq" "SB215DAP_S82_L001_R2_001.fastq"
"SB315DAP_S83_L001_R1_001.fastq" "SB315DAP_S83_L001_R2_001.fastq"
"SB415DAP_S84_L001_R1_001.fastq" "SB415DAP_S84_L001_R2_001.fastq"
"SC115DAP_S85_L001_R1_001.fastq" "SC115DAP_S85_L001_R2_001.fastq"
"SC215DAP_S86_L001_R1_001.fastq" "SC215DAP_S86_L001_R2_001.fastq"
"SC315DAP_S87_L001_R1_001.fastq" "SC315DAP_S87_L001_R2_001.fastq"
"SC415DAP_S88_L001_R1_001.fastq" "SC415DAP_S88_L001_R2_001.fastq"
"SD115DAP_S89_L001_R1_001.fastq" "SD115DAP_S89_L001_R2_001.fastq"
"SD215DAP_S90_L001_R1_001.fastq" "SD215DAP_S90_L001_R2_001.fastq"
"SD315DAP_S91_L001_R1_001.fastq" "SD315DAP_S91_L001_R2_001.fastq"
"SD415DAP_S92_L001_R1_001.fastq" "SD415DAP_S92_L001_R2_001.fastq"
"SE115DAP_S93_L001_R1_001.fastq" "SE115DAP_S93_L001_R2_001.fastq"
"SE215DAP_S94_L001_R1_001.fastq" "SE215DAP_S94_L001_R2_001.fastq"
"SE315DAP_S95_L001_R1_001.fastq" "SE315DAP_S95_L001_R2_001.fastq"
"SE415DAP_S96_L001_R1_001.fastq" "SE415DAP_S96_L001_R2_001.fastq"

fnFs_s15D<-sort(list.files(path_s15D,pattern="_R1_001.fastq"))
fnRs_s15D<-sort(list.files(path_s15D,pattern="_R2_001.fastq"))
sampleNames_s15D<-sapply(strsplit(basename(fnFs_s15D),"_"), `[`, 1)
sampleNames_s15D

"SA115DAP" "SA215DAP" "SA315DAP" "SA415DAP" "SB115DAP" "SB215DAP"
"SB315DAP" "SB415DAP" "SC115DAP" "SC215DAP" "SC315DAP" "SC415DAP"
"SD115DAP" "SD215DAP" "SD315DAP" "SD415DAP" "SE115DAP" "SE215DAP"
"SE315DAP" "SE415DAP"

fnFs_s15D<-file.path(path_s15D,fnFs_s15D)
fnRs_s15D<-file.path(path_s15D,fnRs_s15D)
png("Fastq_s15D_F.png")
plotQualityProfile(fnFs_s15D) 
dev.off() 

Bulk soil samples collected 15 days after seed sowing - Forward reads

png("Fastq_s15D_R.png")
plotQualityProfile(fnRs_s15D) 
dev.off()

Bulk soil samples collected 15 days after seed sowing - Reverse reads

setwd("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/25DAP_rhizos_samples")
path_r25D<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/25DAP_rhizos_samples")
sort(list.files(path_r25D))

"RiA125DAP_S137_L001_R1_001.fastq" "RiA125DAP_S137_L001_R2_001.fastq"
"RiA225DAP_S138_L001_R1_001.fastq" "RiA225DAP_S138_L001_R2_001.fastq"
"RiA325DAP_S139_L001_R1_001.fastq" "RiA325DAP_S139_L001_R2_001.fastq"
"RiA425DAP_S140_L001_R1_001.fastq" "RiA425DAP_S140_L001_R2_001.fastq"
"RiB125DAP_S141_L001_R1_001.fastq" "RiB125DAP_S141_L001_R2_001.fastq"
"RiB225DAP_S142_L001_R1_001.fastq" "RiB225DAP_S142_L001_R2_001.fastq"
"RiB325DAP_S143_L001_R1_001.fastq" "RiB325DAP_S143_L001_R2_001.fastq"
"RiB425DAP_S144_L001_R1_001.fastq" "RiB425DAP_S144_L001_R2_001.fastq"
"RiC125DAP_S145_L001_R1_001.fastq" "RiC125DAP_S145_L001_R2_001.fastq"
"RiC225DAP_S146_L001_R1_001.fastq" "RiC225DAP_S146_L001_R2_001.fastq"
"RiC325DAP_S147_L001_R1_001.fastq" "RiC325DAP_S147_L001_R2_001.fastq"
"RiC425DAP_S148_L001_R1_001.fastq" "RiC425DAP_S148_L001_R2_001.fastq"
"RiD125DAP_S149_L001_R1_001.fastq" "RiD125DAP_S149_L001_R2_001.fastq"
"RiD225DAP_S150_L001_R1_001.fastq" "RiD225DAP_S150_L001_R2_001.fastq"
"RiD325DAP_S151_L001_R1_001.fastq" "RiD325DAP_S151_L001_R2_001.fastq"
"RiD425DAP_S152_L001_R1_001.fastq" "RiD425DAP_S152_L001_R2_001.fastq"
"RiE125DAP_S153_L001_R1_001.fastq" "RiE125DAP_S153_L001_R2_001.fastq"
"RiE225DAP_S154_L001_R1_001.fastq" "RiE225DAP_S154_L001_R2_001.fastq"
"RiE325DAP_S155_L001_R1_001.fastq" "RiE325DAP_S155_L001_R2_001.fastq"
"RiE425DAP_S156_L001_R1_001.fastq" "RiE425DAP_S156_L001_R2_001.fastq"

fnFs_r25D<-sort(list.files(path_r25D,pattern="_R1_001.fastq"))
fnRs_r25D<-sort(list.files(path_r25D,pattern="_R2_001.fastq"))
sampleNames_r25D<-sapply(strsplit(basename(fnFs_r25D),"_"), `[`, 1)
sampleNames_r25D

"RiA125DAP" "RiA225DAP" "RiA325DAP" "RiA425DAP" "RiB125DAP" "RiB225DAP"
"RiB325DAP" "RiB425DAP" "RiC125DAP" "RiC225DAP" "RiC325DAP" "RiC425DAP"
"RiD125DAP" "RiD225DAP" "RiD325DAP" "RiD425DAP" "RiE125DAP" "RiE225DAP"
"RiE325DAP" "RiE425DAP"

fnFs_r25D<-file.path(path_r25D,fnFs_r25D)
fnRs_r25D<-file.path(path_r25D,fnRs_r25D)
png("Fastq_r25D_F.png")
plotQualityProfile(fnFs_r25D)
dev.off()

Rhizospheric soil samples collected 25 days after seed sowing - Forward reads

png("Fastq_r25D_R.png")
plotQualityProfile(fnRs_r25D)
dev.off()

Rhizospheric soil samples collected 25 days after seed sowing - Reverse reads

setwd("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/25DAP_soil_samples")
path_s25D<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/25DAP_soil_samples")
sort(list.files(path_s25D))

"SA125DAP_S97_L001_R1_001.fastq" "SA125DAP_S97_L001_R2_001.fastq"
"SA225DAP_S98_L001_R1_001.fastq" "SA225DAP_S98_L001_R2_001.fastq"
"SA325DAP_S99_L001_R1_001.fastq" "SA325DAP_S99_L001_R2_001.fastq"
"SA425DAP_S100_L001_R1_001.fastq" "SA425DAP_S100_L001_R2_001.fastq"
"SB125DAP_S101_L001_R1_001.fastq" "SB125DAP_S101_L001_R2_001.fastq"
"SB225DAP_S102_L001_R1_001.fastq" "SB225DAP_S102_L001_R2_001.fastq"
"SB325DAP_S103_L001_R1_001.fastq" "SB325DAP_S103_L001_R2_001.fastq"
"SB425DAP_S104_L001_R1_001.fastq" "SB425DAP_S104_L001_R2_001.fastq"
"SC125DAP_S105_L001_R1_001.fastq" "SC125DAP_S105_L001_R2_001.fastq"
"SC225DAP_S106_L001_R1_001.fastq" "SC225DAP_S106_L001_R2_001.fastq"
"SC325DAP_S107_L001_R1_001.fastq" "SC325DAP_S107_L001_R2_001.fastq"
"SC425DAP_S108_L001_R1_001.fastq" "SC425DAP_S108_L001_R2_001.fastq"
"SD125DAP_S109_L001_R1_001.fastq" "SD125DAP_S109_L001_R2_001.fastq"
"SD225DAP_S110_L001_R1_001.fastq" "SD225DAP_S110_L001_R2_001.fastq"
"SD325DAP_S111_L001_R1_001.fastq" "SD325DAP_S111_L001_R2_001.fastq"
"SD425DAP_S112_L001_R1_001.fastq" "SD425DAP_S112_L001_R2_001.fastq"
"SE125DAP_S113_L001_R1_001.fastq" "SE125DAP_S113_L001_R2_001.fastq"
"SE225DAP_S114_L001_R1_001.fastq" "SE225DAP_S114_L001_R2_001.fastq"
"SE325DAP_S115_L001_R1_001.fastq" "SE325DAP_S115_L001_R2_001.fastq"
"SE425DAP_S116_L001_R1_001.fastq" "SE425DAP_S116_L001_R2_001.fastq"

fnFs_s25D<-sort(list.files(path_s25D, pattern="_R1_001.fastq"))
fnRs_s25D<-sort(list.files(path_s25D, pattern="_R2_001.fastq"))
sampleNames_s25D<-sapply(strsplit(basename(fnFs_s25D),"_"), `[`, 1)
sampleNames_s25D

"SA125DAP" "SA225DAP" "SA325DAP" "SA425DAP" "SB125DAP" "SB225DAP"
"SB325DAP" "SB425DAP" "SC125DAP" "SC225DAP" "SC325DAP" "SC425DAP"
"SD125DAP" "SD225DAP" "SD325DAP" "SD425DAP" "SE125DAP" "SE225DAP"
"SE325DAP" "SE425DAP"

fnFs_s25D<-file.path(path_s25D,fnFs_s25D)
fnRs_s25D<-file.path(path_s25D,fnRs_s25D)
png("Fastq_s25D_F.png")
plotQualityProfile(fnFs_s25D)
dev.off()

Bulk soil samples collected 25 days after seed sowing - Forward reads

png("Fastq_s25D_R.png")
plotQualityProfile(fnRs_s25D)
dev.off()

Bulk soil samples collected 25 days after seed sowing - Reverse reads

I split bulk and rhizospheric soil samples in two different directories

path<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/soil_samples") 
sort(list.files(path))
fnFs <- sort(list.files(path, pattern="_R1_001.fastq"))
fnRs <- sort(list.files(path, pattern="_R2_001.fastq"))
sampleNames <- sapply(strsplit(basename(fnFs), "_"), `[`, 1)
sampleNames

"SA10DAP" "SA115DAP" "SA125DAP" "SA1CN" "SA20DAP" "SA215DAP"
"SA225DAP" "SA2CN" "SA30DAP" "SA315DAP" "SA325DAP" "SA3CN"
"SA40DAP" "SA415DAP" "SA425DAP" "SA4CN" "SB10DAP" "SB115DAP"
"SB125DAP" "SB20DAP" "SB215DAP" "SB225DAP" "SB30DAP" "SB315DAP"
"SB325DAP" "SB40DAP" "SB415DAP" "SB425DAP" "SC10DAP" "SC115DAP"
"SC125DAP" "SC20DAP" "SC215DAP" "SC225DAP" "SC30DAP" "SC315DAP"
"SC325DAP" "SC40DAP" "SC415DAP" "SC425DAP" "SD10DAP" "SD115DAP"
"SD125DAP" "SD20DAP" "SD215DAP" "SD225DAP" "SD30DAP" "SD315DAP"
"SD325DAP" "SD40DAP" "SD415DAP" "SD425DAP" "SE10DAP" "SE115DAP"
"SE125DAP" "SE1CN" "SE20DAP" "SE215DAP" "SE225DAP" "SE2CN"
"SE30DAP" "SE315DAP" "SE325DAP" "SE3CN" "SE40DAP" "SE415DAP"
"SE425DAP" "SE4CN"

fnRs <- file.path(path, fnRs)
filt_path <- file.path(path, "filtered")
filtFs <- file.path(filt_path, paste0(sampleNames, "_F_filt.fastq"))
filtRs <- file.path(filt_path, paste0(sampleNames, "_R_filt.fastq"))
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(245,245), maxN=0, maxEE=c(2,2),truncQ=2, rm.phix=TRUE,compress=TRUE, multithread=TRUE)
png("soil_filtered.png", width=16, height=8, units='in', res=300)
plotQualityProfile(filtFs)
dev.off()

truncLen=c(245,245)

errF<-learnErrors(filtFs,multithread=TRUE)
101364585 total bases in 413733 reads from 13 samples will be used for learning the error rates.
errR<-learnErrors(filtRs,multithread=TRUE)
101364585 total bases in 413733 reads from 13 samples will be used for learning the error rates.
png("errors.png")
plotErrors(errF, nominalQ=TRUE)

derepFs <- derepFastq(filtFs)
derepRs <- derepFastq(filtRs)
names(derepFs) <- sampleNames
names(derepRs) <- sampleNames
dadaFs <- dada(derepFs, err=errF, multithread=TRUE)
dadaRs <- dada(derepRs, err=errR, multithread=TRUE)
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=TRUE)
seqtab <- makeSequenceTable(mergers)
dim(seqtab)
[1]    68 40709
table(nchar(getSequences(seqtab)))
seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)
Identified 27783 bimeras out of 40709 input sequences.
dim(seqtab.nochim)
[1]    68 12926
sum(seqtab.nochim)/sum(seqtab)
[1] 0.6643015
table(nchar(getSequences(seqtab.nochim)))
getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.nochim))
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
rownames(track) <- sampleNames
head(track)
input filtered denoisedF denoisedR merged nonchim
SA10DAP 25333 22590 19950 19153 12628 10430
SA115DAP 26252 23601 20614 20295 12855 10599
SA125DAP 23078 20474 17929 17140 10775 8549
SA1CN 26257 23451 19992 19277 11421 10338
SA20DAP 24037 21445 18817 18012 11393 10175
SA215DAP 22504 19993 17090 16279 9926 8934
write.table(track, "track.txt", sep="\t", quote=F)
taxa <- assignTaxonomy(seqtab.nochim,"/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/silva_nr99_v138.1_train_set.fa", multithread=TRUE)
write.table(taxa, "taxa.txt", sep="\t", quote=F)
taxa.
t <- taxa
rownames(taxa.print) <- NULL
head(taxa.print)
Kingdom Phylum Class Order Family Genus
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Cupriavidus"
"Bacteria" "Firmicutes" "Bacilli" "Bacillales" NA NA
"Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rhizobiales" "Devosiaceae" "Devosia"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Pseudomonadales" "Pseudomonadaceae" "Pseudomonas"
"Bacteria" "Acidobacteriota" "Vicinamibacteria" "Vicinamibacterales" "Vicinamibacteraceae" NA
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Pseudomonadales" "Pseudomonadaceae" "Pseudomonas"
asv_seqs <- colnames(seqtab.nochim)
asv_headers <- vector(dim(seqtab.nochim)[2], mode="character")
for (i in 1:dim(seqtab.nochim)[2]) {
    asv_headers[i] <- paste(">ASV", i, sep="_")
  }
asv_fasta <- c(rbind(asv_headers, asv_seqs))
write(asv_fasta, "ASVs_solo.fa")
asv_tab <- t(seqtab.nochim)
row.names(asv_tab) <- sub(">", "", asv_headers)
write.table(asv_tab, "ASVs_solo_counts.txt", sep="\t", quote=F)
asv_tax <- taxa
row.names(asv_tax) <- sub(">", "", asv_headers)
write.table(asv_tax, "ASVs_solo_taxonomy.txt", sep="\t", quote=F)
counts <- read.table("ASVs_solo_counts.txt", header = TRUE, sep = "\t", dec = ".")
taxonomy <- read.table("ASVs_solo_taxonomy.txt", header = TRUE, sep = "\t", dec = ".")
counts_taxonomy <- as.data.frame(c(taxonomy, counts)) #concatenar
write.table(counts_taxonomy, "solo_counts_taxonomy.txt", sep="\t", quote=F)
library(vegan); packageVersion("vegan")

rarefaction <- t(counts)
S <- specnumber(rarefaction)
raremax <- min(rowSums(rarefaction))
Srare <- rarefy(rarefaction, raremax)
png("rarefaction.png")
rarecurve(rarefaction, step = 1, sample = raremax, col = "blue", cex = 0.6)
empty rows removed
dev.off()

Rarefaction curves

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("phyloseq")
library(Biostrings)
library(ggplot2)
library(phyloseq)

samples.out <- rownames(seqtab.nochim)
subject <- sapply(strsplit(samples.out, "AP"), `[`, 1)
treatment<-substr(subject,2,3)
day<-substr(subject,4,7)
samdf<-data.frame(Treatment=treatment,Day=day)
treatment[treatment=="iA"]="A"
treatment[treatment=="iB"]="B"
treatment[treatment=="iC"]="C"
treatment[treatment=="iD"]="D"
treatment[treatment=="iE"]="E"
treatment[treatment=="A1"]="A"
treatment[treatment=="A2"]="A"
treatment[treatment=="A3"]="A"
treatment[treatment=="A4"]="A"
treatment[treatment=="A5"]="A"
treatment[treatment=="B1"]="B"
treatment[treatment=="B2"]="B"
treatment[treatment=="B3"]="B"
treatment[treatment=="B4"]="B"
treatment[treatment=="B5"]="B"
treatment[treatment=="C1"]="C"
treatment[treatment=="C2"]="C"
treatment[treatment=="C3"]="C"
treatment[treatment=="C4"]="C"
treatment[treatment=="C5"]="C"
treatment[treatment=="D1"]="D"
treatment[treatment=="D2"]="D"
treatment[treatment=="D3"]="D"
treatment[treatment=="D4"]="D"
treatment[treatment=="D5"]="D"
treatment[treatment=="E1"]="E"
treatment[treatment=="E2"]="E"
treatment[treatment=="E3"]="E"
treatment[treatment=="E4"]="E"
treatment[treatment=="E5"]="E"
day[day=="115D"]<-"15D"
day[day=="215D"]<-"15D"
day[day=="315D"]<-"15D"
day[day=="415D"]<-"15D"
day[day=="425D"]<-"25D"
day[day=="325D"]<-"25D"
day[day=="225D"]<-"25D"
day[day=="125D"]<-"25D"

samdf$Treatments[samdf$Treatment=="A"]<-"Native soil + Ab-V5"
samdf$Treatments[samdf$Treatment=="B"]<-"Native soil 10⁻³ + Ab-V5"
samdf$Treatments[samdf$Treatment=="C"]<-"Native soil 10⁻⁶ + Ab-V5"
samdf$Treatments[samdf$Treatment=="D"]<-"Native soil 10⁻⁹ + Ab-V5"
samdf$Treatments[samdf$Treatment=="E"]<-"Sterilized soil + Ab-V5"
neworder<-c("Native soil + Ab-V5", "Native soil 10⁻³ + Ab-V5", "Native soil 10⁻⁶ + Ab-V5", "Native soil 10⁻⁹ + Ab-V5", "Sterilized soil + Ab-V5")
neworderday<-c("CN", "0D", "15D", "25D")
samdf$Treatments<-as.character(samdf$Treatments)
samdf$Treatments<-factor(samdf$Treatments, levels=neworder)
samdf$Day<-as.character(samdf$Day)
samdf$Day<-factor(samdf$Day,levels=neworderday)
rownames(samdf)<-samples.out
ps<-phyloseq(otu_table(seqtab.nochim,taxa_are_rows=FALSE),sample_data(samdf),tax_table(taxa))
ps
dna<-Biostrings::DNAStringSet(taxa_names(ps))
names(dna)<-taxa_names(ps)
ps<-merge_phyloseq(ps,dna)
taxa_names(ps)<-paste0("ASV",seq(ntaxa(ps)))
ps
phyloseq-class experiment-level object
otu_table() OTU Table: [ 12926 taxa and 68 samples ]
sample_data() Sample Data: [ 68 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 12926 taxa by 6 taxonomic ranks ]
refseq() DNAStringSet: [ 12926 reference sequences ]
azospirillum<-subset_taxa(ps,Genus=="Azospirillum")
azospirillum
phyloseq-class experiment-level object
otu_table() OTU Table: [ 52 taxa and 40 samples ]
sample_data() Sample Data: [ 40 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 52 taxa by 7 taxonomic ranks ]
refseq() DNAStringSet: [ 52 reference sequences ]
abv5<-subset_taxa(ps,Species=="Azospirillum_brasilense_AbV5")

rz2ms9<-subset_taxa(ps,Species=="Bacillus_thurigiensis_RZ2MS9")

bacillus<-subset_taxa(ps,Genus=="Bacillus")
bacillus
phyloseq-class experiment-level object
otu_table() OTU Table: [ 143 taxa and 40 samples ]
sample_data() Sample Data: [ 40 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 143 taxa by 7 taxonomic ranks ]
refseq() DNAStringSet: [ 143 reference sequences ]
png("plot_richness.png", width=8, height=4,units = 'in', res = 300)
plot_richness(ps,x="Day",measures=c("Shannon", "Simpson"),color="Treatments")
dev.off()

Transform data to proportions as appropriate for Bray-Curtis distances

ps.prop <- transform_sample_counts(ps, function(otu) otu/sum(otu))
ord.nmds.bray <- ordinate(ps.prop, method="NMDS", distance="bray")
png("top20.png", width=8, height=4,units = 'in', res = 300)
plot_bar(ps.top20, x="Treatments", fill="Family") + facet_wrap(~Day, scales="free_x")
Warning message:
Removed 20 rows containing missing values (position_stack). 
dev.off()
path<-("/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/rhizosphere_samples")
sort(list.files(path))
fnFs<-sort(list.files(path,pattern="_R1_001.fastq"))
fnRs<-sort(list.files(path,pattern="_R2_001.fastq"))
sampleNames<-sapply(strsplit(basename(fnFs),"_"), `[`, 1)
sampleNames

"RiA115DAP" "RiA125DAP" "RiA215DAP" "RiA225DAP" "RiA315DAP" "RiA325DAP"
"RiA415DAP" "RiA425DAP" "RiB115DAP" "RiB125DAP" "RiB215DAP" "RiB225DAP"
"RiB315DAP" "RiB325DAP" "RiB415DAP" "RiB425DAP" "RiC115DAP" "RiC125DAP"
"RiC215DAP" "RiC225DAP" "RiC315DAP" "RiC325DAP" "RiC415DAP" "RiC425DAP"
"RiD115DAP" "RiD125DAP" "RiD215DAP" "RiD225DAP" "RiD315DAP" "RiD325DAP"
"RiD415DAP" "RiD425DAP" "RiE115DAP" "RiE125DAP" "RiE215DAP" "RiE225DAP"
"RiE315DAP" "RiE325DAP" "RiE415DAP" "RiE425DAP"

fnFs<-file.path(path,fnFs)
fnRs<-file.path(path,fnRs)
png("Fastq_rhizos.png")
plotQualityProfile(fnFs)
filt_path<-file.path(path,"filtered")
filtFs<-file.path(filt_path,paste0(sampleNames,"_F_filt.fastq"))
filtRs<-file.path(filt_path,paste0(sampleNames,"_R_filt.fastq"))
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(245,240), maxN=0, maxEE=c(2,2),truncQ=2, rm.phix=TRUE,compress=TRUE, multithread=TRUE)

Creating output directory: /workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/rhizosphere_samples/filtered

png("rhizos_filtered.png",width=16,height=8,units='in', res=300)
plotQualityProfile(filtFs)

errF<-learnErrors(filtFs,multithread=TRUE)

101659320 total bases in 414936 reads from 13 samples will be used for learning the error rates.

> errR <- learnErrors(filtRs, multithread=TRUE)

105035520 total bases in 437648 reads from 14 samples will be used for learning the error rates.

png("errors_rhizo.png")
plotErrors(errF, nominalQ=TRUE)

derepFs <- derepFastq(filtFs)
derepRs <- derepFastq(filtRs)
names(derepFs) <- sampleNames
names(derepRs) <- sampleNames
dadaFs <- dada(derepFs, err=errF, multithread=TRUE)
dadaRs <- dada(derepRs, err=errR, multithread=TRUE)
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=TRUE)
seqtab <- makeSequenceTable(mergers)
dim(seqtab)

40 36926

table(nchar(getSequences(seqtab)))
seqtab.nochim<-removeBimeraDenovo(seqtab,method="consensus",multithread=TRUE,verbose=TRUE)

Identified 26817 bimeras out of 36926 input sequences.

dim(seqtab.nochim)

40 10109

sum(seqtab.nochim)/sum(seqtab)

0.6143463

table(nchar(getSequences(seqtab.nochim)))
getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.nochim))
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
rownames(track) <- sampleNames
head(track)
input filtered denoisedF denoisedR merged nonchim
RiA115DAP 27485 24492 21942 21139 17481 11889
RiA125DAP 36829 33314 30040 29276 22362 16139
RiA215DAP 45639 40605 36722 35786 27716 20101
RiA225DAP 33937 30835 28757 27981 22923 14823
RiA315DAP 41524 36336 32828 31987 25715 18324
RiA325DAP 34988 32045 30663 30388 28717 17201
write.table(track, "track.txt", sep="\t", quote=F)
taxa <- assignTaxonomy(seqtab.nochim,"/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/silva_nr99_v138.1_train_set.fa", multithread=TRUE)
is.chloro<-taxa[,"Order"] %in% "Chloroplast"
seqtab.nochloro<-seqtab.nochim[,!is.chloro]
taxa <- assignTaxonomy(seqtab.nochloro,"/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/silva_nr99_v138.1_train_set.fa", multithread=TRUE)
is.mito<-taxa[,"Family"] %in% "Mitochondria"
seqtab.noplasts<-seqtab.nochloro[,!is.mito]
taxa <- assignTaxonomy(seqtab.noplasts,"/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/silva_nr99_v138.1_train_set.fa", multithread=TRUE)
write.table(taxa, "taxa.txt", sep="\t", quote=F)
taxa.print <- taxa
rownames(taxa.print) <- NULL
head(taxa.print)
Kingdom Phylum Class Order Family Genus
"Bacteria" "Cyanobacteria" "Cyanobacteriia" "Chloroplast" NA NA
"Bacteria" "Cyanobacteria" "Cyanobacteriia" "Chloroplast" NA NA
"Bacteria" "Actinobacteriota" "Actinobacteria" "Micrococcales" "Micrococcaceae" "Pseudarthrobacter"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Ralstonia"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Pseudomonadales" "Pseudomonadaceae" "Pseudomonas"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Ralstonia"
asv_seqs <- colnames(seqtab.noplasts)
asv_headers <- vector(dim(seqtab.noplasts)[2], mode="character")
for (i in 1:dim(seqtab.noplasts)[2]) {
     asv_headers[i] <- paste(">ASV", i, sep="_")
   }
asv_fasta <- c(rbind(asv_headers, asv_seqs))
write(asv_fasta,"ASVs_rhizo.fa")
asv_tab<-t(seqtab.noplasts)
row.names(asv_tab) <- sub(">", "", asv_headers)
 write.table(asv_tab,"ASVs_rhizo_counts.txt",sep="\t", quote=F)
asv_tax<-taxa
row.names(asv_tax) <- sub(">", "", asv_headers)
write.table(asv_tax,"ASVs_rhizo_taxonomy.txt",sep="\t", quote=F)
counts<-read.table("ASVs_rhizo_counts.txt",header = TRUE, sep = "\t", dec = ".")
seqtab <- makeSequenceTable(mergers)
dim(seqtab)
[1]    40 36926
table(nchar(getSequences(seqtab)))
seqtab.nochim<-removeBimeraDenovo(seqtab,method="consensus",multithread=TRUE,verbose=TRUE)

Identified 26817 bimeras out of 36926 input sequences.

is.chloro<-taxa[,"Order"] %in% "Chloroplast"
seqtab.nochloro<-seqtab.nochim[,!is.chloro]
is.mito<-taxa[,"Family"] %in% "Mitochondria"
seqtab.noplasts<-seqtab.nochloro[,!is.mito]
dim(seqtab.noplasts)

40 10006

sum(seqtab.noplasts)/sum(seqtab)

0.5835919

table(nchar(getSequences(seqtab.noplasts)))
getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.noplasts))
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonplasts")
rownames(track) <- sampleNames
head(track)
input filtered denoisedF denoisedR merged nonplasts
RiA115DAP 27485 24492 21942 21139 17481 10402
RiA125DAP 36829 33314 30040 29276 22362 15680
RiA215DAP 45639 40605 36722 35786 27716 18940
RiA225DAP 33937 30835 28757 27981 22923 14585
RiA315DAP 41524 36336 32828 31987 25715 18082
RiA325DAP 34988 32045 30663 30388 28717 16523
write.table(track, "track.txt", sep="\t", quote=F)
taxa <- assignTaxonomy(seqtab.noplasts,"/workspace/mquecine/JessicaFerrarezi/Metataxonomics/dados/brutos/silva_nr99_v138.1_train_set.fa", multithread=TRUE)
write.table(taxa, "taxa.txt", sep="\t", quote=F)
taxa.print <- taxa
rownames(taxa.print) <- NULL
head(taxa.print)
Kingdom Phylum Class Order Family Genus
"Bacteria" "Actinobacteriota" "Actinobacteria" "Micrococcales" "Micrococcaceae" "Pseudarthrobacter"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Ralstonia"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Pseudomonadales" "Pseudomonadaceae" "Pseudomonas"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Ralstonia"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Ralstonia"
"Bacteria" "Proteobacteria" "Gammaproteobacteria" "Burkholderiales" "Burkholderiaceae" "Ralstonia"
asv_seqs <- colnames(seqtab.noplasts)
asv_headers<-vector(dim(seqtab.noplasts)[2],mode="character")
for (i in 1:dim(seqtab.noplasts)[2]) {
     asv_headers[i] <- paste(">ASV", i, sep="_")
   }
asv_fasta <- c(rbind(asv_headers, asv_seqs))
write(asv_fasta,"ASVs_rhizo.fa")
asv_tab<-t(seqtab.noplasts)
row.names(asv_tab) <- sub(">", "", asv_headers)
write.table(asv_tab,"ASVs_rhizo_counts.txt",sep="\t", quote=F)
asv_tax<-taxa
row.names(asv_tax) <- sub(">", "", asv_headers)
write.table(asv_tax,"ASVs_rhizo_taxonomy.txt",sep="\t", quote=F)
counts<-read.table("ASVs_rhizo_counts.txt",header = TRUE, sep = "\t", dec = ".")
taxonomy<-read.table("ASVs_rhizo_taxonomy.txt",header=TRUE,sep="\t",dec=".")
counts_taxonomy<-as.data.frame(c(taxonomy,counts))
write.table(counts_taxonomy,"rhizo_counts_taxonomy.txt", sep="\t",quote=F)
library(vegan)
rarefaction<-t(counts)
S<-specnumber(rarefaction)
raremax<-min(rowSums(rarefaction))
Srare<-rarefy(rarefaction,raremax)
png("rarefaction_r.png")
rarecurve(rarefaction,step=1,sample=raremax,col="blue",cex=0.6)

library(Biostrings)
library(ggplot2)
library(phyloseq)
samples.out <- rownames(seqtab.noplasts)
subject <- sapply(strsplit(samples.out, "AP"), `[`, 1)
treatment<-substr(subject,2,3)
day<-substr(subject,4,7)
samdf<-data.frame(Treatment=treatment,Day=day)

samdf$Treatment[samdf$Treatment=="iA"]<-"A"
samdf$Treatment[samdf$Treatment=="iB"]<-"B"
samdf$Treatment[samdf$Treatment=="iC"]<-"C"
samdf$Treatment[samdf$Treatment=="iD"]<-"D"
samdf$Treatment[samdf$Treatment=="iE"]<-"E"
samdf$Treatment[samdf$Treatment=="E1"]<-"E"
samdf$Treatment[samdf$Treatment=="D1"]<-"D"
samdf$Treatment[samdf$Treatment=="C1"]<-"C"
samdf$Treatment[samdf$Treatment=="B1"]<-"B"
samdf$Treatment[samdf$Treatment=="A1"]<-"A"
samdf$Treatment[samdf$Treatment=="A2"]<-"A"
samdf$Treatment[samdf$Treatment=="A3"]<-"A"
samdf$Treatment[samdf$Treatment=="A4"]<-"A"
samdf$Treatment[samdf$Treatment=="B2"]<-"B"
samdf$Treatment[samdf$Treatment=="B3"]<-"B"
samdf$Treatment[samdf$Treatment=="B4"]<-"B"
samdf$Treatment[samdf$Treatment=="C2"]<-"C"
samdf$Treatment[samdf$Treatment=="C3"]<-"C"
samdf$Treatment[samdf$Treatment=="C4"]<-"C"
samdf$Treatment[samdf$Treatment=="D2"]<-"D"
samdf$Treatment[samdf$Treatment=="D3"]<-"D"
samdf$Treatment[samdf$Treatment=="D4"]<-"D"
samdf$Treatment[samdf$Treatment=="E2"]<-"E"
samdf$Treatment[samdf$Treatment=="E3"]<-"E"
samdf$Treatment[samdf$Treatment=="E4"]<-"E"
samdf$Day[samdf$Day=="115D"]<-"15D"
samdf$Day[samdf$Day=="215D"]<-"15D"
samdf$Day[samdf$Day=="315D"]<-"15D"
samdf$Day[samdf$Day=="415D"]<-"15D"
samdf$Day[samdf$Day=="125D"]<-"25D"
samdf$Day[samdf$Day=="225D"]<-"25D"
samdf$Day[samdf$Day=="325D"]<-"25D"
samdf$Day[samdf$Day=="425D"]<-"25D"
samdf$Niche<-c("Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Rhizosphere","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil","Bulk soil")

samdf$Treatments[samdf$Treatment=="A"]<-"Native community"
samdf$Treatments[samdf$Treatment=="B"]<-"10⁻³-Native community"
samdf$Treatments[samdf$Treatment=="C"]<-"10⁻⁶-Native community"
samdf$Treatments[samdf$Treatment=="D"]<-"10⁻⁹-Native community"
samdf$Treatments[samdf$Treatment=="E"]<-"Sterilized soil"
neworder<-c("Native community", "10⁻³-Native community", "10⁻⁶-Native community", "10⁻⁹-Native community", "Sterilized soil")
neworderday<-c("CN","0D","15D","25D")
neworderniche<-c("Bulk soil", "Rhizosphere")
samdf$Treatments<-as.character(samdf$Treatments)
samdf$Treatments<-factor(samdf$Treatments, levels=neworder)
samdf$Day<-as.character(samdf$Day)
samdf$Day<-factor(samdf$Day,levels=neworderday)
samdf$Niche<-as.character(samdf$Niche)
samdf$Niche<-factor(samdf$Niche,levels=neworderniche)
rownames(samdf)<-samples.out
ps<-phyloseq(otu_table(seqtab.noplasts,taxa_are_rows=FALSE),sample_data(samdf),tax_table(taxa))

dna<-Biostrings::DNAStringSet(taxa_names(ps))
names(dna)<-taxa_names(ps)
ps<-merge_phyloseq(ps,dna)
taxa_names(ps)<-paste0("ASV",seq(ntaxa(ps)))
png("plot_richness.png", width=8, height=4,units = 'in', res = 300)
plot_richness(ps,x="Day",measures=c("Shannon", "Simpson"),color="Treatments")

richnessdf<-data.frame(samdf,estimate_richness(ps)) ### Tabela completa com índices de riqueza
anova_richness<-aov(Shannon ~ Treatment + Day + Niche,richnessdf)
summary(anova_richness)
library(agricolae)
lsd_richness<-LSD.test(anova_richness,c("Treatment","Day","Niche"),main="Chao1 ~ Treatment+Day+Niche,console=TRUE")

$groups

Shannon groups
D:15D:Rhizosphere 6.344453 a
D:25D:Rhizosphere 6.177422 ab
C:15D:Rhizosphere 6.137612 ab
B:15D:Rhizosphere 6.122270 abc
C:25D:Rhizosphere 6.092669 abc
E:15D:Rhizosphere 5.902019 abc
B:25D:Rhizosphere 5.895528 abc
E:25D:Rhizosphere 5.814584 abc
D:0D:Bulk soil 5.800548 abcd
E:0D:Bulk soil 5.750761 abcde
C:0D:Bulk soil 5.729492 abcde
E:15D:Bulk soil 5.678020 abcde
D:15D:Bulk soil 5.610393 abcdef
C:15D:Bulk soil 5.575967 abcdef
D:25D:Bulk soil 5.540153 abcdef
A:25D:Rhizosphere 5.446532 bcdef
B:0D:Bulk soil 5.442790 bcdef
B:15D:Bulk soil 5.417646 bcdef
B:25D:Bulk soil 5.378118 bcdef
E:25D:Bulk soil 5.364804 bcdef
A:15D:Rhizosphere 5.310821 cdef
A:15D:Bulk soil 4.977376 defg
E: CN:Bulk soil 4.974569 efg
A:0D:Bulk soil 4.974246 efg
A:25D:Bulk soil 4.817122 fg
A: CN:Bulk soil 4.813979 fg
C:25D:Bulk soil 4.152103 g
lsd_richness<-LSD.test(anova_richness,c("Treatment", "Niche"),main="Shannon ~ Treatment+Day+Niche,console=TRUE")

$groups

Shannon groups
D:Rhizosphere 6.260937 a
C:Rhizosphere 6.115140 ab
B:Rhizosphere 6.008899 ab
E:Rhizosphere 5.858302 abc
D:Bulk soil 5.650365 bc
E:Bulk soil 5.442038 cd
B:Bulk soil 5.412851 cd
A:Rhizosphere 5.378676 cde
C:Bulk soil 5.152521 de
A:Bulk soil 4.895681 e
lsd_richness<-LSD.test(anova_richness,c("Niche", "Day"),main="Shannon ~ Treatment+Day+Niche,console=TRUE")

$groups

Shannon groups
Rhizosphere:15D 5.963435 a
Rhizosphere:25D 5.885347 ab
Bulk soil:0D 5.539567 bc
Bulk soil:15D 5.451880 c
Bulk soil:25D 5.050460 d
Bulk soil:CN 4.894274 d
png("richness_alltogether.png",width=8,height=4,units='in',res=300)
plot_richness(ps,color="Day",shape="Niche",x="Treatments",measures=c("Shannon","Simpson"))

ps.prop <- transform_sample_counts(ps, function(OTU) OTU/sum(OTU))
ord.nmds.bray <- ordinate(ps.prop, method="NMDS", distance="bray")
plot_ordination(ps.prop,ord.nmds.bray,color="Treatments",title="Bray NMDS")

top50<-names(sort(taxa_sums(ps),decreasing=TRUE))[1:50]
ps.top50<-transform_sample_counts(ps,function(OTU) OTU/sum(OTU))
ps.top50<-prune_taxa(top50,ps.top50)
png("top50_rhizos.png",width=16,height=8,units='in',res=300)
plot_bar(ps.top50,x="Day",fill="Order")+facet_wrap(~Treatments,scales="free_x")
library(ape)
random_tree<-rtree(ntaxa(ps),rooted=TRUE,tip.label=taxa_names(ps))
ps<-merge_phyloseq(ps,random_tree)
ps
phyloseq-class experiment-level object
otu_table() OTU Table: [ 10006 taxa and 40 samples ]
sample_data() Sample Data: [ 40 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 10006 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 10006 tips and 10005 internal nodes ]
refseq() DNAStringSet: [ 10006 reference sequences ]
png("phytree.png",  width=8, height=4,units = 'in', res = 300) plot_tree(ps,color="Treatments",shape="Day",label.tips="taxa_names",ladderize="right",plot.margin=0.3)
azospirillum<-subset_taxa(ps,Genus=="Azospirillum")
random_tree_abv5<-rtree(ntaxa(azospirillum),rooted=TRUE,tip.label=taxa_names(azospirillum))
png("random_tree_abv5.png",width=8, height=4,units = 'in', res = 300)
plot(random_tree_abv5)

azospirillum<-merge_phyloseq(azospirillum,random_tree_abv5)
azospirillum
png("phytree_abv5.png",  width=8, height=4,units = 'in', res = 300)
plot_tree(azospirillum,color="Treatments",shape="Niche",size="Day",label.tips="taxa_names",ladderize="right",plot.margin=0.3, title="Azospirillum spp.")

bacillus<-subset_taxa(ps,Genus=="Bacillus")
bacillus
phyloseq-class experiment-level object
otu_table() OTU Table: [ 143 taxa and 40 samples ]
sample_data() Sample Data: [ 40 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 143 taxa by 7 taxonomic ranks ]
refseq() DNAStringSet: [ 143 reference sequences ]
random_tree_bacillus<-rtree(ntaxa(bacillus),rooted=TRUE,tip.label=taxa_names(bacillus))
png("random_tree_bacillus.png", width=8, height=4,units = 'in', res = 300)
plot(random_tree_bacillus)

bacillus<-merge_phyloseq(bacillus, random_tree_bacillus)
bacillus
phyloseq-class experiment-level object
otu_table() OTU Table: [ 143 taxa and 40 samples ]
sample_data() Sample Data: [ 40 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 143 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 143 tips and 142 internal nodes ]
refseq() DNAStringSet: [ 143 reference sequences ]
png("phytree_bacillus.png",width=8, height=4,units = 'in', res = 300)
plot_tree(bacillus, color="Treatments",shape="Niche", size="Day",label.tips="taxa_names",ladderize="right",plot.margin=0.3)

paenibacillus<-subset_taxa(ps,Genus=="Paenibacillus")
paenibacillus
phyloseq-class experiment-level object
otu_table() OTU Table: [ 33 taxa and 40 samples ]
sample_data() Sample Data: [ 40 samples by 3 sample variables ]
tax_table() Taxonomy Table: [ 33 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 33 tips and 32 internal nodes ]
refseq() DNAStringSet: [ 33 reference sequences ]
random_tree_paenibacillus<-rtree(ntaxa(paenibacillus),rooted=TRUE,tip.label=taxa_names(paenibacillus))
png("random_tree_paenibacillus.png",width=8, height=4,units = 'in', res = 300)
plot(random_tree_paenibacillus)

png("phytree_paenibacillus.png", width=8, height=4,units = 'in', res = 300)
plot_tree(paenibacillus,color="Treatments",shape="Day", label.tips="taxa_names",ladderize="right",plot.margin=0.3)

priestia<-subset_taxa(ps,Genus=="Priestia")
png("phytree_priestia.png",width=8, height=4,units = 'in', res = 300)
plot_tree(priestia,color="Treatments",shape="Day", label.tips="taxa_names",ladderize="right",plot.margin=0.3)

streptomyces<-subset_taxa(ps,Genus=="Streptomyces")
png("phytree_streptomyces.png",width=8, height=4,units = 'in', res = 300)
plot_tree(streptomyces,color="Treatments",shape="Day",label.tips="taxa_names",ladderize="right",plot.margin=0.3)

siphonobacter<-subset_taxa(ps,Genus=="Siphonobacter")
png("phytree_siphonobacter.png",width=8, height=4,units = 'in', res = 300)
plot_tree(siphonobacter,color="Treatments",shape="Day",label.tips="taxa_names",ladderize="right",plot.margin=0.3)

amycolatopsis<-subset_taxa(ps,Genus=="Amycolatopsis")
png("phytree_amycolatopsis.png",width=8, height=4,units = 'in', res = 300)
plot_tree(amycolatopsis,color="Treatments",shape="Day",label.tips="taxa_names",ladderize="right",plot.margin=0.3)

PICRUSt:

In the sheet counts, it is necessary to add "#OTU ID" in the first cell (first row/first column)

nohup picrust2_pipeline.py -s ASVs_alltogether.fa -i ASVs_alltogether_counts.txt -o picrust2_out_pipeline -p 10 &

Inkscape installation

If your Ubuntu version or derivative has not packaged Inkscape 1.2.1 for you yet, you can install the current version from our ppa for Ubuntu 22.04, 20.04 and 22.10 (Ubuntu development version):

Desktop Instructions

Start the application "Software and updates"
Select the tab "Other Software"
Click the button "Add"
Enter the following text
ppa:inkscape.dev/stable
Click the button "Add Source"
Click on the button "Close"
When the pop up warns "The information about available software is out-of-date" click the button "Reload"
The latest stable version of Inkscape is now avaialble to be installed from the software center.

Command Line

sudo add-apt-repository ppa:inkscape.dev/stable
sudo apt update
sudo snap install inkscape