This is a practice project that using Python with TensorFlow.
Show the Load Cifar10 training dataset and randomly show 10 images and labels.
Learn More →
Learn More →
Learn More →
Or you can show this:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 32, 32, 64) 1792
_________________________________________________________________
conv2d_1 (Conv2D) (None, 32, 32, 64) 36928
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 16, 16, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 16, 16, 128) 73856
_________________________________________________________________
conv2d_3 (Conv2D) (None, 16, 16, 128) 147584
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 8, 8, 128) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 8, 8, 256) 295168
_________________________________________________________________
conv2d_5 (Conv2D) (None, 8, 8, 256) 590080
_________________________________________________________________
conv2d_6 (Conv2D) (None, 8, 8, 256) 590080
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 4, 4, 256) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 4, 4, 512) 1180160
_________________________________________________________________
conv2d_8 (Conv2D) (None, 4, 4, 512) 2359808
_________________________________________________________________
conv2d_9 (Conv2D) (None, 4, 4, 512) 2359808
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 2, 2, 512) 0
_________________________________________________________________
conv2d_10 (Conv2D) (None, 2, 2, 512) 2359808
_________________________________________________________________
conv2d_11 (Conv2D) (None, 2, 2, 512) 2359808
_________________________________________________________________
conv2d_12 (Conv2D) (None, 2, 2, 512) 2359808
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 1, 1, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 512) 0
_________________________________________________________________
dense (Dense) (None, 4096) 2101248
_________________________________________________________________
dense_1 (Dense) (None, 4096) 16781312
_________________________________________________________________
dense_2 (Dense) (None, 2) 8194
=================================================================
Total params: 33,605,442
Trainable params: 33,605,442
Non-trainable params: 0
_________________________________________________________________
Learn More →
Learn More →
Random choose test image=1000 :
Learn More →
Learn More →
Git 基礎知識 Git 版本控制之工作流程 Local 本地端 working directory 目錄工作區 staging area 面積暫存區 localrepo 版本儲存區 Romate 雲端 remoterepo 雲端儲存區(目前使用的是GitHub)
Apr 11, 2022Introduction to Image Processing, Computer Vision and Deep Learning 目錄 [TOC] 1. Find Contour 1) Draw Contour Follow the steps:
Jan 11, 2021使用 python, OpenCV 建立 目錄 [TOC] 1. import cv2 2. 讀取影像、調整大小 讀取影像
Jan 7, 2021Description This is a practice project that using Python with OpenCV. Requirements Python==3.7.0 opencv-contrib-python==3.4.2.17 matplotlib==3.1.1 numpy==1.18.5 PyQt5==5.15.1
Jan 7, 2021or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up