--- title: Cifar10 classifier using VGG16 tags: DeepLearning, TensorFlow, Keras --- ## Description This is a practice project that using Python with TensorFlow. ## Requirements * Python==3.7.0 * opencv-contrib-python==3.4.2.17 * matplotlib==3.1.1 * numpy==1.18.5 --- ## Show the results ### 1. Show train image Show the Load Cifar10 training dataset and randomly show 10 images and labels. ![](https://i.imgur.com/9m0CwrT.png) ### 2. Show training hyperparameters ![](https://i.imgur.com/3lobTbM.png) ### 3. Show VGG16 model ![](https://i.imgur.com/xu8k7Ys.png) Or you can show this: ```model= Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 32, 32, 64) 1792 _________________________________________________________________ conv2d_1 (Conv2D) (None, 32, 32, 64) 36928 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 16, 16, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 16, 16, 128) 73856 _________________________________________________________________ conv2d_3 (Conv2D) (None, 16, 16, 128) 147584 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 8, 8, 128) 0 _________________________________________________________________ conv2d_4 (Conv2D) (None, 8, 8, 256) 295168 _________________________________________________________________ conv2d_5 (Conv2D) (None, 8, 8, 256) 590080 _________________________________________________________________ conv2d_6 (Conv2D) (None, 8, 8, 256) 590080 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 4, 4, 256) 0 _________________________________________________________________ conv2d_7 (Conv2D) (None, 4, 4, 512) 1180160 _________________________________________________________________ conv2d_8 (Conv2D) (None, 4, 4, 512) 2359808 _________________________________________________________________ conv2d_9 (Conv2D) (None, 4, 4, 512) 2359808 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (None, 2, 2, 512) 0 _________________________________________________________________ conv2d_10 (Conv2D) (None, 2, 2, 512) 2359808 _________________________________________________________________ conv2d_11 (Conv2D) (None, 2, 2, 512) 2359808 _________________________________________________________________ conv2d_12 (Conv2D) (None, 2, 2, 512) 2359808 _________________________________________________________________ max_pooling2d_4 (MaxPooling2 (None, 1, 1, 512) 0 _________________________________________________________________ flatten (Flatten) (None, 512) 0 _________________________________________________________________ dense (Dense) (None, 4096) 2101248 _________________________________________________________________ dense_1 (Dense) (None, 4096) 16781312 _________________________________________________________________ dense_2 (Dense) (None, 2) 8194 ================================================================= Total params: 33,605,442 Trainable params: 33,605,442 Non-trainable params: 0 _________________________________________________________________ ``` ### 4. Accuracy and training loss ![](https://i.imgur.com/VJdKWLj.png) ![](https://i.imgur.com/QhVqsxY.png) ### 5. Show test images Random choose test image=1000 : ![](https://i.imgur.com/7g3KjVO.png) ![](https://i.imgur.com/IykFJMG.png)