rubenros1795
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # Antonym Detection ## Paper revisions - [x] change \cite into \citep or sth like that - [x] na de open vraag moet het iets herschreven worden. er iis een verschijnsel in de literatuur. wij gaan kijken of en hoe dat gereflecteerd wordt in kranten. (iets met dat meer debat zowel voor toename als afname gebruik binary oppositions kan zorgen). onze hypothese is vooral de tweede helft van de zin na de vraag. (Alie) - [x] extra lijn in Fig. 1 met enkel dictionary pairs (Ruben) - [x] onderscheid maken in Fig. 3, 4 en 5 tussen true en false positives (bijv. dikgedrukt), zodat het een logische aanzet is naar de bespreking in 4.2 (Alie) - [ ] Discussie in 4.2 iets meer laten aansluiten op eerdere figuren (Joris) - [x] Punt van reviewr 1 over different types of antonyms kan verwerkt worden in Inleiding (zie tweede punt op deze to-do lijst) - [x] en aan het begin van Section Related Work (Ruben) (heb ik (A) al gedaan) - [x] In Section 3 het corpus iets uitgebreider introduceren (NRC in Nlse krantenlandschap) (Joris) - [x] Vertalingen van paren toevoegen in lopende tekst (Joris) - [x] en de rest in een appendix (Alie) - [x] Meer info over finetuning BERT (Joris) - [x] Iets meer toelichting geven over de vertrekdefinitie van antoniem - even kijken wat de meneer van de dikke dictionary erover zei. Kijken of selectiecriteria van Van Dale te achterhalen zijn (Alie) - [x] A naar B interesting dingetje uitzoeken of het toegelicht kan worden in enkele zin (Alie) - [x] Filter 10 herschrijven en uitzoeken (Ruben) - [x] Iets zeggen over threshold (Joris) - [x] tabelletje met paren met hoogste score (Joris) - [x] uitleggen dat we geen flexibele tagger hebben qua tijd to unlock the superfull potential (Joris) ## Models Learning rate: $2e-5$ Batch size: $16$ Early stopping: val accuracy, patience $3$ | Model | Train data | $F^1_{ant}$ | $F^1_{syn}$ | Accuracy | | --------------------- | ----------------- | ----------- | ----------- | -------- | | `bert-base-dutch-cased` | nl | 0.63 | 0.67 | 0.65 | | `robbert-v2-dutch-base` | nl | 0.56 | 0.64 | 0.60 | | `mdeberta-v3-base` | nl | 0.93 | 0.94 | 0.94 | | `mdeberta-v3-base` | nl + fallows (en) | 0.86 | 0.88 | 0.87 | | `xlm-roberta-base` | nl | 0.49 | 0.61 | 0.56 | | `bert-base-multilingual-cased` | nl | 0.70 | 0.71 | 0.71 | --- ## Meeting Notes --- ### 4 July 2023 Script draait om woordparen te maken, maar er zijn heel veel mogelijkheden. Hoe kunnen we de mogelijkheden limiteren? - op zinsniveau kijken naar combinaties, want dat maakt de kans op een daadwerkelijk antonym groter. - zinsniveau parsen - paragraaf niveau kan ook (new line) Input voor classifier: | woord 1 | woord 2 | artikel-id | | -------- | -------- | -------- | | laag | hoog | 123 | eerste sample: 500 artikelen --- ### 27 June 2023 Het is goed nieuws dat er nog steeds een hoge accuracy is met `mdeberta-v3-base` - we hebben getraind met mwb, en getest met van dale - we gaan het nu nog beter trainen, op zowel mwb en van dale We beginnen met het krantencorpus - POS-taggen - lemmatiseren - woordparen maken op artikelniveau Vier opties voor threshold antoniem - probability antoniem - classifier met 3 klassen - word embeddings (fasttext) - BERT embeddings Ruben gaat pre-processing krantencorpus doen, Joris gaat modellen trainen, Alie gaat schrijven. --- ### 20 June 2023 We willen weten of de hoge accuracy van `mdeberta-v3-base` goed of slecht nieuws is. - meer training materiaal om ook meer abstracte antonymen te detecteren - synoniemen waarvoor we nog geen antonymen hebben in de Van Dale opzoeken en antonymen scrapen (Ruben) - nieuwe test set Mogelijke scenario's - weer hoge accuracy: heel goed nieuws - accuracy gaat omlaag: als het hoog genoeg is, nog steeds`mdeberta-v3-base`, anders `bert-base-multilingual-cased` met opgekrikte performance naar 0.75 Toepassing - krantencorpus omzetten naar woordparen (per artikel/alinea/chunks/sliding window) - zelfst. naamwoorden en bijv. naamwoorden - komt er iets uit? - frequentie van antonymenparen - collocaties: zorgt toename woord 1 of 2 ook voor toename antoniemrelatie 1-2? PMI - drie opties: collocaties, asymmetrisch, nog iets? Contextualisering - Levi-Strauss en Derrida over binaire opposities --- ### 13 June 2023 Stappenplan 1. Lijst van synoniemen en antoniemen opstellen met behulp van mijnwoordenboek.nl 2. Model trainen om een synoniem of antoniem te herkennen 1. classificeer elk mogelijk woordpaar op een pagina/in een artikel bestaande uit een zelfst. naamwoord of adjectief als S(ynoniem), A(ntonym) of (N)iks 2. bepaal voor elk zelfst. naamw. of adjectief op een bepaalde pagina/in een artikel dat een bepaalde cos. distance heeft tot een ander woord de S of A. Modellen om te proberen: - BERT - word2vec - fasttext - ingebouwde functie voor synoniemdetectie Corpora: - HAROLD - kranten - parlementaire debatten --- ## Literature (in order of relevance) [Church et al., *Training on Lexical Resources* (2022)](https://aclanthology.org/2022.lrec-1.676.pdf) - We propose using lexical resources (thesaurus, VAD) to fine-tune pretrained deep nets such as BERT and ERNIE. Then at inference time, these nets can be used to distinguish synonyms from antonyms, as well as VAD distances. The inference method can be applied to words as well as texts such as multiword expressions (MWEs), out of vocabulary words (OOVs), morphological variants and more. --- [ Defining Antonymy: A Corpus-based Study of Opposites by Lexico-syntactic Patterns (2010)](https://www.ai.rug.nl/~anja/public/Lobanovaetal.pdf) - Using small sets of adjectival seed antonym pairs, we automatically find patterns where these pairs co-occur in a large corpus of Dutch, and then use these patterns to extract new antonym pairs. --- [Xie et al., *A mixture-of-experts model for antonym-synonym discrimination* (2021)](https://aclanthology.org/2021.acl-short.71.pdf) - Discrimination between antonyms and synonyms is an important and challenging NLP task. Antonyms and synonyms often share the same or similar contexts and thus are hard to make a distinction. This paper proposes two underlying hypotheses and employs the mixture-of-experts framework as a solution. It works on the basis of a divide-and-conquer strategy, where a number of localized experts focus on their own domains (or subspaces) to learn their specialties, and a gating mechanism determines the space partitioning and the expert mixture. Experimental results have shown that our method achieves the state-of-the-art performance on the task. --- [Nguyen et al., *Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network* (2017)](https://aclanthology.org/E17-1008.pdf) - Distinguishing between antonyms and synonyms is a key task to achieve high performance in NLP systems. While they are notoriously difficult to distinguish by distributional co-occurrence models, pattern-based methods have proven effective to differentiate between the relations. In this paper, we present a novel neural network model AntSynNET that exploits lexico-syntactic patterns from syntactic parse trees. In addition to the lexical and syntactic information, we successfully integrate the distance between the related words along the syntactic path as a new pattern feature. The results from classification experiments show that AntSynNET improves the performance over prior pattern-based methods. --- [Nguyen et al., *Integrating Distributional Lexical Contrast into Word Embeddings for Antonym–Synonym Distinction* (2016)](https://arxiv.org/pdf/1605.07766.pdf) - We propose a novel vector representation that integrates lexical contrast into distributional vectors and strengthens the most salient features for determining degrees of word similarity. The improved vectors significantly outperform standard models and distinguish antonyms from synonyms with an average precision of 0.66–0.76 across word classes (adjectives, nouns, verbs). Moreover, we integrate the lexical contrast vectors into the objective function of a skip-gram model. The novel embedding outperforms state-of-the-art models on predicting word similarities in SimLex- 999, and on distinguishing antonyms from synonyms. --- [Learning to Negate Adjectives with Bilinear Models (2017)](https://aclanthology.org/E17-2012.pdf) - We learn a mapping that negates adjectives by predicting an adjective’s antonym in an arbitrary word embedding model. We show that both linear models and neural networks improve on this task when they have access to a vector representing the semantic domain of the input word, e.g. a centroid of temperature words when predicting the antonym of ‘cold’. We intrduce a continuous class-conditional bilinear neural network which is able to negate adjectives with high precision. --- [Word Embedding-based Antonym Detection using Thesauri and Distributional Information (2015)](https://aclanthology.org/N15-1100.pdf) - This paper proposes a novel approach to train word embeddings to capture antonyms. Word embeddings have shown to capture synonyms and analogies. Such word embeddings, however, cannot capture antonyms since they depend on the distributional hypothesis. Our approach utilizes supervised synonym and antonym information from thesauri, as well as distributional information from large-scale unlabelled text data. The evaluation results on the GRE antonym question task show that our model outperforms the state-of-the-art sys- tems and it can answer the antonym questions in the F-score of 89%. --- [Computing Lexical Contrast (2013)](https://direct.mit.edu/coli/article/39/3/555/1436/Computing-Lexical-Contrast) - We propose an automatic method to identify contrasting word pairs that is based on the hypothesis that if a pair of words, A and B, are contrasting, then there is a pair of opposites, C and D, such that A and C are strongly related and B and D are strongly related. (For example, there exists the pair of opposites hot and cold such that tropical is related to hot, and freezing is related to cold.) We will call this the contrast hypothesis. --- [Revisiting Word Embedding for Contrasting Meaning (2015)](https://aclanthology.org/P15-1011.pdf) --- [Paper met code](https://github.com/ec2604/Antonym-Detection/tree/master) --- https://annals-csis.org/Volume_30/drp/pdf/37.pdf --- https://github.com/i-samenko/Triplet-net/ ---

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully