學海無涯,思境無維;數乃六藝,理之始也。
或有一得足矣 愚千慮

Vector Space

+ :
V+VV

Associative

x,y,zV,(x+y)+z=x+(y+z)

Communative

x,yV,x+y=y+x

Inverse

xV,x,x+x=0

Identity

xV,x+0=x

Scaler Multiplication

a,bR,x,yV

a(x+y)=ax+ay

(a+b)x=ax+bx

a(bx)=(ab)x

1x=x

Linear Combination

yV,a1,a2,,anR,x1,x2,,xnV

y=a1x1+a2x2++anxn

Basis

Linear Indpendent

a1x1+a2x2++anxn=0a1=a2==an=0

Basis Size is Constant

V is a vector space with a basis containing
n
elements, then all bases of
V
contain
n
elements.

Dimention of
V

V over
R
with basis {
x1,x2,,xn
}, dim
V
=
n

Group Isomorphic

  • bijection
  • f(xAy)=f(x)Bf(y)
tags: math vector space