{%hackmd @RintarouTW/About %} # Vector Space ### + : $V+V\to V$ #### Associative $$ \forall x,y,z \in V, (x+y)+z = x+(y+z) $$ #### Communative $$ \forall x,y\in V, x+y=y+x $$ #### Inverse $$ \forall x\in V, \exists -x, -x + x = 0 $$ #### Identity $$ \forall x\in V, x+0 = x $$ ### Scaler Multiplication $a,b\in \mathbb{R}, x,y\in V$ $$ a(x+y) = ax+ay $$ $$ (a+b)x = ax+bx $$ $$ a(bx) = (ab)x $$ $$ 1x = x $$ ## Linear Combination $\forall y\in V,\exists a_1,a_2,\cdots,a_n\in \mathbb{R}, x_1,x_2,\cdots,x_n\in V$ $$ y = a_1x_1+a_2x_2+\cdots+a_nx_n $$ ## Basis ### Linear Indpendent $$ a_1x_1+a_2x_2+\cdots+a_nx_n=0\implies a_1=a_2=\cdots=a_n=0 $$ ### Basis Size is Constant $V$ is a vector space with a basis containing $n$ elements, then all bases of $V$ contain $n$ elements. ### Dimention of $V$ $V$ over $\mathbb{R}$ with basis {$x_1,x_2,\cdots,x_n$}, dim $V$ = $n$ ## Group Isomorphic - bijection - $f(x\cdot_{A} y) = f(x)\cdot_{B} f(y)$ ###### tags: `math` `vector space`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up