Try   HackMD

學海無涯,思境無維;數乃六藝,理之始也。
或有一得足矣 愚千慮

Abstract Algebra Theory and Applications

https://open.umn.edu/opentextbooks/textbooks/abstract-algebra-theory-and-applications

Preliminaries

Equivalence Relation

  • Rational Number Equivalence
  • Function Equivalence
  • Equivalence Classes (form a partition) of a Set
  • Matrix Equivalence

Matrix Equivalence (similar relation)

A,BMatrixABP,PAP1=B
A
and
B
are smiliar.

  • Points on the same circle
    {p1=(x1,y1)p2=(x2,y2),x12+y12=x22+y22
  • Integer Modulo
    n

    rs(modn)rnsrs=knkZ

    r
    is congruent to
    s
    modulo
    n
    (r 與 s 同餘)

The Division Algorithm

{a,bZS={am+bnm,nZ,am+bn>0}am+bnNS is well-orderedd is the least element of S,x,yZ,d=ax+by,d>0a=q1d+r1,0r1<dr1=aq1d=aq1(ax+by)=a(1q1x)+b(q1y)r1>0r1Sr1<d,contradiction to d is the least element of Sr1=0,a=q1ddab=q2d+r2,0r2<dr2=bq2d=bq2(ax+by)=a(q2x)+b(1q2y)r2>0r2Sr2<d,contradiction to d is the least element of Sr2=0,b=q2ddbdadbd is the common divisor of a and bassume d is the other common divisor of a and b{a=kad,kaZb=kbd,kbZd=ax+by=kadx+kbdy=d(kax+kby)ddd=gcd(a,b)gcd(a,b)=the least element of {am+bnm,nZ,am+bnN}

Integers

Prime Number

pprime{pNp1aN,a<pgcd(a,p)=1p1,p2prime,gcd(p1,p2)=1

Euclid

Let a and b be integers and p be a prime number. If p | ab, then either p|a or p|b.

a,bZ,pprime,pabpapb

Proof:

if pagcd(a,p)=1x,yZ,ax+py=1b=b1=b(ax+py)=(ab)x+p(by)pabpppbfor the same reason,if pbpa

Infinite Prime Numbers

Assume there're only finite prime numbers

p1,p2,,pn
Let
P=p1p2pn+1
, then
pi,1in,piP

{pi(p1p2pn)piPpi(Pp1p2pn)pi1

Since all prime numbers can't divide 1, contradiction to
piprime
.
Therefore exists infinite prime numbers.

ab1(modn)

Let a be a nonzero integer. Then

gcd(a,n)=1 if and only if there exists a multiplicative inverse
b
for
a(modn)
; that is, a nonzero integer
b
such that
ab1(modn)

Z=Z{0}a,nZ,gcd(a,n)=1bZ,ab1(modn)
Proof:
)

gcd(a,n)=1r,sZ,ar+ns=1ar=1nsar1(modn)b=r(modn)Zn

)

ab1(modn)nab1kZ,ab1=knabkn=1let d=gcd(a,n)dadnd(abkn)d1d=1gcd(a,n)=1

Groups

Group of Units of
Zn

Unit of

Zn

aZn,gcd(a,n)=1 aka. a,n are relatively prime or coprime,a is a unit of Zn

U(n) : the set of all units of

Zn form a group called the group of units of
Zn
under
×n

U(n)={uuunit of Zn}

Cayley Table of

(Z8,×8)

U(8)={1,3,5,7}×8135711357331755571377531

General Linear Group
GLn(R)

{Mn(R)n×n matrixInn×n identity matrixGLn(R)aMn(R),bMn(R),ab=ba=In

Quaternion Group

1=(1001),I=(0110)J=(0ii0),K=(i00i)1IJK11IJKII1KJJJK1IKKJI1{i2=1I2=J2=K2=1IJ=K,JI=KJK=I,KJ=IKI=J,IK=JQ8={±1,±I,±J,±K}

Complex Plane Example:

C=C{0}zC,z=a+biz1=abia2+b2

Heisenberg Group

a=(1xy01z001),b=(1xy01z001)ab=(1x+xy+y+xz01z+z001)Identity=(100010001)Inverse of a=(1xxzy01z001)

Subgroups

Subgroup of Complex Number under Multiplication

H={1,1,i,i}C11ii111ii111iiiii11iii11HC

Special Linear Subgroup
SLn(R)
of
GLn(R)

SLn(R){xGLn(R)det(x)=1}

Cyclic Groups

Permutation Groups

Coset and Lagrange's Theorem

Coset

Lagrange's Theorem

Euler's Theorem

Euler's

ϕ-function
ϕ(n):|{m1m<n,gcd(m,n)=1}|

Example
|U(12)|=|{1,5,7,11}|=ϕ(12)=4pprime,ϕ(p)=p1

tags: math