{%hackmd @RintarouTW/About %} # Abstract Algebra Theory and Applications https://open.umn.edu/opentextbooks/textbooks/abstract-algebra-theory-and-applications ## Preliminaries ### Equivalence Relation - Rational Number Equivalence - Function Equivalence - Equivalence Classes (form a partition) of a Set - Matrix Equivalence :::info Matrix Equivalence (similar relation) $$ A,B\in Matrix\\ A \sim B \iff \exists P, PAP^{-1} = B $$ $A$ and $B$ are **smiliar**. ::: - Points on the same circle $\cases{p_1=(x_1,y_1)\\p_2=(x_2,y_2)},{x_1}^2+{y_1}^2={x_2}^2+{y_2}^2$ - Integer Modulo $n$ $r\equiv s\pmod n\iff r\equiv_n s\iff r-s=kn\mid k\in \mathbb{Z}$ $r$ is **congruent to** $s$ **modulo** $n$ (r 與 s 同餘) ### The Division Algorithm :::info $$ \cases{ a,b\in\mathbb{Z}\\ S=\{am+bn\mid m,n\in\mathbb{Z}, am+bn\gt 0\}\implies am+bn\in\mathbb{N}\implies S\text{ is well-ordered}\\ d\text{ is the least element of S}, \exists x,y\in\mathbb{Z}, d=ax+by,d\gt 0 }\\ a=q_1d+r_1,0\le r_1\lt d\implies \begin{array}l r_1&=a-q_1d\\ &=a-q_1(ax+by)\\ &=a(1-q_1x)+b(-q_1y)\\ \end{array}\\ r_1\gt 0\implies r_1 \in S\land r_1\lt d, \text{contradiction to $d$ is the least element of } S\\ \therefore r_1=0,a=q_1d\implies d\mid a\\ b=q_2d+r_2,0\le r_2\lt d\implies \begin{array}l r_2&=b-q_2d\\ &=b-q_2(ax+by)\\ &=a(-q_2x)+b(1-q_2y)\\ \end{array}\\ r_2\gt 0\implies r_2 \in S\land r_2\lt d, \text{contradiction to $d$ is the least element of } S\\ \therefore r_2=0,b=q_2d\implies d\mid b\\ d\mid a\land d\mid b\implies d\text{ is the common divisor of $a$ and $b$}\\ assume\ \exists d'\text{ is the other common divisor of $a$ and $b$}\\ \cases{ a=k_ad',k_a\in\mathbb{Z}\\ b=k_bd',k_b\in\mathbb{Z} }\\ \begin{array}l d&=ax+by\\ &=k_ad'x+k_bd'y\\ &=d'(k_ax+k_by) \end{array}\\ \therefore d'\mid d\implies d=gcd(a,b)\\ gcd(a,b)=\text{the least element of } \{am+bn \mid m,n\in\mathbb{Z}, am+bn\in\mathbb{N}\} $$ ::: ## Integers ### Prime Number $$ p\in prime\implies\cases{ p\in\mathbb{N}\\ p\not\mid 1\\ \forall a\in\mathbb{N},a\lt p\implies gcd(a,p)=1\\ \forall p_1,p_2\in prime, gcd(p_1,p_2)=1 } $$ ### Euclid Let a and b be integers and p be a prime number. If p | ab, then either p|a or p|b. :::info $$ a,b\in\mathbb{Z},p\in prime, p\mid ab\implies p\mid a\lor p\mid b $$ Proof: $$ if\ p\not\mid a\implies gcd(a,p)=1\implies\exists x,y\in\mathbb{Z}, ax+py=1\\ b=b\cdot 1=b(ax+py)= (ab)x+p(by)\\ p\mid ab\land p\mid p\implies p\mid b\\ \text{for the same reason},if\ p\not\mid b\implies p\mid a $$ ::: ### Infinite Prime Numbers :::info Assume there're only finite prime numbers $p_1, p_2, \ldots, p_n$ Let $P = p_1p_2\cdot p_n + 1$, then $\exists p_i, 1\le i\le n, p_i\mid P$ $$ \cases{ p_i\mid (p_1p_2\cdot p_n)\\ p_i\mid P\\ }\implies p_i\mid (P-p_1p_2\cdot p_n)\implies p_i\mid 1 $$ Since all prime numbers can't divide 1, contradiction to $p_i\in prime$. Therefore exists infinite prime numbers. ::: ### $ab \equiv 1 \pmod n$ Let a be a nonzero integer. Then $gcd(a, n) = 1$ if and only if there exists a multiplicative inverse $b$ for $a \pmod n$; that is, a nonzero integer $b$ such that $ab \equiv 1 \pmod n$ :::info $$ \mathbb{Z^*}=\mathbb{Z}\setminus\{0\}\\ \forall a,n\in\mathbb{Z^*}, gcd(a,n)=1 \iff\exists b\in\mathbb{Z^*}, ab \equiv 1 \pmod n $$ Proof: $\implies)$ $$ gcd(a,n)=1\implies \exists r,s\in\mathbb{Z^*}, ar+ns=1\\ ar=1-ns\implies ar\equiv 1\pmod n\\ \therefore b=r\pmod n\in\mathbb{Z_n}\\ $$ $\impliedby)$ $$ ab\equiv 1\pmod n\implies n\mid ab-1\\ \exists k\in\mathbb{Z^*},ab-1=kn\implies ab-kn=1\\ let\ d=gcd(a,n)\implies d\mid a\land d\mid n\\ \therefore d\mid (ab-kn)\implies d\mid 1\implies d=1\\ gcd(a,n)=1 $$ ::: ## Groups ### Group of Units of $\mathbb{Z_n}$ Unit of $\mathbb{Z_n}$ :::info $$ \forall a\in\mathbb{Z_n}, gcd(a,n)=1\text{ aka. $a,n$ are relatively prime or coprime},\\ a\text{ is a unit of }\mathbb{Z_n} $$ ::: U(n) : the set of all units of $\mathbb{Z_n}$ form a group called **the group of units of $\mathbb{Z_n}$** under $\times_n$ :::info $$ U(n)=\{u\mid u\in unit\ of\ \mathbb{Z_n}\} $$ ::: Cayley Table of $(\mathbb{Z_8}, \times_8)$ $$ U(8)=\{1,3,5,7\}\\ \begin{array}{c|ccc} \times_8 & 1 & 3 & 5 & 7\\\hline 1 & 1 & 3 & 5 & 7\\ 3 & 3 & 1 & 7 & 5\\ 5 & 5 & 7 & 1 & 3\\ 7 & 7 & 5 & 3 & 1\\ \end{array} $$ ### General Linear Group $GL_n(\mathbb{R})$ :::info $$ \cases{ M_n(\mathbb{R}) \iff n\times n\ matrix\\ I_n \iff n\times n\ identity\ matrix }\\ GL_n(\mathbb{R})\iff\forall a\in M_n(\mathbb{R}),\exists b\in M_n(\mathbb{R}), ab=ba=I_n $$ ::: ### Quaternion Group :::info $$ 1=\pmatrix{1&0\\0&1},I=\pmatrix{0&1\\-1&0}\\ J=\pmatrix{0&i\\i&0},K=\pmatrix{i&0\\0&-i}\\ \begin{array}{l|cccc} \cdot & 1 & I & J & K\\\hline 1 & 1 & I & J & K\\ I & I & -1 & K & -J\\ J & J & -K & -1 & I\\ K & K & J & -I & -1\\ \end{array} \iff\cases{ i^2=-1\\ I^2=J^2=K^2=-1\\ IJ=K,JI=-K\\JK=I,KJ=-I\\KI=J,IK=-J\\ }\\ Q_8=\{\pm 1, \pm I, \pm J,\pm K\} $$ ::: Complex Plane Example: $$ \mathbb{C^*}=\mathbb{C}\setminus\{0\}\\ \forall z\in\mathbb{C^*},z=a+bi\implies z^{-1}=\dfrac{a-bi}{a^2+b^2} $$ ### Heisenberg Group :::info $$ a=\pmatrix{1&x&y\\0&1&z\\0&0&1}, b=\pmatrix{1&x'&y'\\0&1&z'\\0&0&1} \implies ab=\pmatrix{1&x+x'&y+y'+xz'\\0&1&z+z'\\0&0&1}\\ Identity=\pmatrix{1&0&0\\0&1&0\\0&0&1}\\ Inverse\ of\ a=\pmatrix{1&-x&xz-y\\0&1&-z\\0&0&1} $$ ::: ## Subgroups ### Subgroup of Complex Number under Multiplication $$ H=\{1,-1,i,-i\}\subset\mathbb{C^*}\\ \begin{array}{c|rrrr} \cdot & 1 & -1 & i & -i\\\hline 1 & 1 & -1 & i & -i\\ -1 & -1 & 1 & -i & i\\ i & i & -i & -1 & 1\\ -i & -i & i & 1 & -1\\ \end{array}\\ \therefore H\lhd \mathbb{C^*} $$ ### Special Linear Subgroup $SL_n(\mathbb{R})$ of $GL_n(\mathbb{R})$ :::info $$ SL_n(\mathbb{R})\iff\{x\in GL_n(\mathbb{R})\mid det(x)=1\} $$ ::: ## Cyclic Groups ## Permutation Groups ## Coset and Lagrange's Theorem ### Coset ### Lagrange's Theorem ### Euler's Theorem :::info Euler's $\phi$-function $$ \phi(n):|\{m\mid 1\le m\lt n,gcd(m,n)=1\}|\\ $$ Example $$ |U(12)| = |\{1,5,7,11\}| = \phi(12) = 4\\ \forall p\in prime, \phi(p) = p-1 $$ ::: ###### tags: `math`