{%hackmd @RintarouTW/About %} # Heron's Formula <iframe src="https://rintaroutw.github.io/fsg/test/HeronFormula.svg" width="883" height="625"></iframe> $$ \cases{ b^2=h^2+d^2\\ a^2=h^2+(c-d)^2 }\\ a^2-b^2=c^2-2cd\\ d=\frac{b^2+c^2-a^2}{2c} $$ :::info We can also get the same result directly from $a^2=b^2+c^2-2bc\cos\theta$, where $d=b\cos\theta$ $$ \implies a^2=b^2+c^2-2cd\\ d=\frac{b^2+c^2-a^2}{2c} $$ ::: $$ \begin{array}l h^2&=b^2-d^2\\ &=(b+d)(b-d)\\ &=(b+\frac{b^2+c^2-a^2}{2c})(b-\frac{b^2+c^2-a^2}{2c})\\ &=(\frac{(b+c)^2-a^2}{2c})(\frac{a^2-(b-c)^2}{2c})\\ &=(\frac{(b+c+a)(b+c-a)}{2c})(\frac{(a+b-c)(a-b+c)}{2c}) \end{array}\\ \therefore h = \frac{\sqrt{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}}{2c}\\ $$ $$ \begin{array}l \triangle &= \frac{ch}{2}\\ &= \frac{c}{2}\frac{\sqrt{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}}{2c}\\ &=\frac{\sqrt{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}}{4}\\ &=\sqrt{\frac{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}{16}}\\ &=\sqrt{\frac{b+c+a}{2}\frac{b+c-a}{2}\frac{a+b-c}{2}\frac{a-b+c}{2}}\\ &=\sqrt{s(s-a)(s-b)(s-c)} \end{array} $$ ## References - https://en.wikipedia.org/wiki/Heron%27s_formula - http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Umberger/MATH7200/HeronFormulaProject/GeometricProof/geoproof.html ###### tags: `math` `geometry` `Heron`