George Lukyanov
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- title : Public Communication with Externalities TODO --- ## New structure of the argument 0. Model exposition 1. Continuation game: a. With public signal \begin{align} \mathbb{E} (\theta| \hat x, y) = \frac{\alpha y + \beta \hat x + \gamma \mu}{\alpha + \beta + \gamma} &= 0\\ \alpha y + \beta \hat x + \gamma \mu & = 0\\ \hat x &= -\frac{1}{\beta} (\alpha y + \gamma \mu), \end{align} b. Without public signal, $$(1-p)\bar\theta(x_\varnothing) + p \int_{\mathcal{Y}^N} \frac{\int_\Theta \theta f(y|\theta) f(\theta|x_\varnothing) \mathrm{d}\theta}{\int_{\mathcal{Y}^N} f(y|x_\varnothing)\mathrm{d}y}\mathrm{d}y = 0$$ 2. Communication stage (informed sender) a. Conflict of interests $x^\star(y) = - \frac{ \alpha + \gamma}{\beta}\bar\theta(y) - \frac{\alpha + \beta + \gamma}{\beta}(r+b)$ $\Delta(y) \triangleq \hat x(y) - x^\star(y) = \frac{\alpha + \beta + \gamma}{\beta}(r+b)$ b. Concealment region \begin{align} 0 & \leq \Pi(x_\varnothing, y) - \Pi(\hat x(y),y)\\ 0 & \leq (r+b + \bar \theta(y)) (F(\hat x|y) - F(x_\varnothing|y)) + \frac{1}{\alpha + \gamma} (f(x_\varnothing|y) - f(\hat x |y))\\ 0 & \leq r+b + \bar \theta(y) - \frac{1}{\alpha + \gamma} \frac{f(x_\varnothing|y) - f(\hat x |y)}{ F(x_\varnothing|y) - F(\hat x|y)} \end{align} \begin{align} \frac{f(x_\varnothing|y) - f(\hat x |y)}{(\alpha+\gamma)(F(x_\varnothing|y) - F(\hat x|y))(r+b + \bar \theta(y))}=1 \end{align} Truncated normal r.v. mean: $$\mathbb{E}(x|x_1<x<x_2) = \bar \theta(y) - \frac{1}{h_{x|y}} \frac{f(x_1|y) - f(x_2|y)}{F(x_1|y) - F(x_2|y)} \Rightarrow \\ \frac{f(x_1|y) - f(x_2|y)}{F(x_1|y) - F(x_2|y)} = h_{x|y} \left(\bar \theta(y) - \mathbb{E}(x|x_1<x<x_2)\right)\\ \in (h_{x|y}\left(\bar \theta(y) - x_2\right);h_{x|y}\left(\bar \theta(y) - x_1) \right)$$ c. Theorem 1 $\mathcal{Y}^N = [y_1, y_2]$ \begin{equation} \bar{\theta}(x_\varnothing) - p \frac{1}{\beta + \gamma} \frac{f(y_2|x_\varnothing) - f(y_1|x_\varnothing)}{F(y_2|x_\varnothing) - F(y_1|x_\varnothing)} = 0 \end{equation} \begin{equation} x_\varnothing = \hat x (y_2) = - \frac{h_{\theta|y}}{\beta} \bar \theta(y_2) = -\frac{1}{\beta}(\alpha y_2 + \gamma \mu) \end{equation} Proof : \begin{equation} \begin{cases} \left(r+b + \bar \theta(y_1)\right) \left( F(x_\varnothing|y_1) - F(\hat x(y_1)|y_1)\right) &- \frac{1}{\alpha + \gamma}\left(f(x_\varnothing|y_1) - f(\hat x(y_1) |y_1)\right) = 0\\ \bar \theta(x_\varnothing)\left(F(y_2|x_\varnothing) - F(y_1|x_\varnothing)\right) &- \frac{p}{\beta + \gamma}\left(f(y_2|x_\varnothing) - f(y_1 |x_\varnothing)\right) = 0\\ x_\varnothing - \hat x(y_2)&=0 \end{cases} \end{equation} ## Things to do - [ ] Вставить графики: Sender’s and overall welfare gain (левый) и equilibrium construction. - [ ] Сделать сравнительную статику на $p, r$ и relative precision (на $y_1, y_2, x_\varnothing$) - [ ] Показать, что при $b=b^T$ welfare не максимальный - [ ] Подрихтовать Introduction - [ ] Заресубмитить статью - [ ] define `ass:distribution` - [x] убрать к хуям $F, H, \Psi$ - [ ] Исследовать функцию в footnote 16 на стр. 18 (нарисовать) - [ ] Rewrite Sections 3.2-3.4 to be consistent with Section 2. - [ ] Переделать Section 4 - [ ] Убрать нах Section 5 - [ ] Переписать Intro & Conclusion - [ ] comparative statics - [ ] $$ - [ ] wrt $\alpha,\beta,$ - [x] $\Pi(x,y)$ in closed form and diagram \begin{align} \Pi(x,y) &= (r+b + \bar \theta(y)) (1 - F(x|y)) + \frac{1 }{\alpha + \gamma} f(x|y)\\ \partial_x\Pi(x,y) &= - (r+b + \bar \theta(x,y)) f(x|y)\\ \partial_y\Pi(x,y) &=\frac{\alpha}{\alpha+\gamma}(1 - F(x|y) - \partial_x\Pi(x,y)) \end{align} <iframe src="https://www.desmos.com/calculator/wtkfbblcec?embed" width="500" height="500" style="border: 1px solid #ccc" frameborder=0></iframe> We are demonstrating that $\Pi(\hat x(y),y) - \Pi(x,y)$ has a unique minimum which is negative in $y$ for a fixed $x$ and is positive on the boundary of the signal domain. \begin{align} \frac{\dd}{\dd y}(\Pi(\hat x(y),y) - \Pi(x,y)) &= \partial_y\Pi(\hat x(y),y) + \partial_x\Pi(\hat x(y),y) \frac{\dd \hat x (y)}{\dd y} - \partial_y\Pi(x,y)\\ &= \partial_y\Pi(\hat x(y),y) -\frac{\alpha}{\beta} \partial_x\Pi(\hat x(y),y) - \partial_y\Pi(x,y)\\ &=\partial_y\Pi(\hat x(y),y) - \partial_y\Pi(x,y) + \frac{\alpha}{\beta}(r+b)f(\hat x|y) \end{align} --- ### Continuation game equilibrium Let all the receivers play the threshold strategy $\hat x (y)$. Consider receiver $i$, who observes public message $m$ and his private signal $x_i$. Receiver $i$'s expected payoff is $$ rA + \mathbb{E}(\theta| x_i,m)a_i.$$ It is obvious that $i$'s best response to $\hat x$ is playing $$a_i(x_i) = \begin{cases} 1, \quad & \text{if } \mathbb{E}(\theta| x_i,m) \geq 0, \\ 0, \quad & \text{if } \mathbb{E}(\theta| x_i,m) < 0. \end{cases}$$ For the receiver $i$ to be indifferent between taking action and staying put, his posterior expectation of $\theta$ therefore must be zero: $$\mathbb{E}(\theta| x_i,m) = 0.$$ The equilibrium threshold strategy of each individual receiver only depends on the public message $m$ and does not depend on the play of other receivers. If the public message is the signal received by the Sender, $m=y$, it is straightforward, given the normality of the signals, to show that the equilibrium play is a linear function of the public signal: Since the posterior of $\theta$ given $\hat{x}$ and $y$ is normal, we have \begin{align} \mathbb{E} (\theta| \hat x, y) = \frac{\alpha y + \beta \hat x + \gamma \mu}{\alpha + \beta + \gamma} &= 0\\ \alpha y + \beta \hat x + \gamma \mu & = 0\\ \hat x &= -\frac{1}{\beta} (\alpha y + \gamma \mu), \end{align} $$\hat x(y) = - \frac{ \alpha + \gamma}{\beta} \bar\theta(y).$$ If the Sender's message is empty, $m=\varnothing$, a receiver understands that either the Sender is concealing public information or she not informed herself. Using the posterior density for this case, defined in \eqref{bayesupdate}, the \eqref{eq:marginal_receiver_indifference_no_info} gives the following equation \begin{align} &(1-p)\bar\theta(x) + p \int_{y_1}^{y_2} \frac{\int_\Theta \theta f(y|\theta) f(\theta|x) \mathrm{d}\theta}{\int_{y_1}^{y_2} f(y|x_i)\mathrm{d}y}\mathrm{d}y &= 0\\ \text{(Use Bayes theorem)}\quad &(1-p)\bar\theta(x) + p \int_{y_1}^{y_2} \frac{\int_\Theta \theta f(\theta|y,x) f(y|x) \mathrm{d}\theta}{\int_{y_1}^{y_2} f(y|x_i)\mathrm{d}y}\mathrm{d}y &= 0\\ \text{(factorize $f(y|x)$)}\quad &(1-p)\bar\theta(x) + p \int_{y_1}^{y_2} \frac{\bar\theta(y,x) f(y|x)}{\int_{y_1}^{y_2} f(y|x_i)\mathrm{d}y}\mathrm{d}y &= 0\\ \text{(use $\bar \theta$ linearity)}\quad&(1-p)\bar\theta(x) + p\left( \frac{\alpha}{\alpha+\beta+\gamma}\int_{y_1}^{y_2} y\frac{f(y|x)}{\int_{y_1}^{y_2} f(y|x_i)\mathrm{d}y}\mathrm{d}y + \frac{\beta x + \gamma \mu}{\alpha+\beta+\gamma}\right) &= 0\\ \text{(truncated normal mean)}\quad &(1-p)\bar\theta(x) + p\left(\bar\theta(x) - \frac{\alpha}{\alpha + \beta + \gamma}\frac{1}{h_{y|x}} \frac{f(y_2|x) - f(y_1|x)}{F(y_2|x) - F(y_1|x)} \right) = 0, \end{align} Finally, by opening the paranthesis and simplifying the expression we get the following characterization of optimal "no info" receiver threshold, $\hat x (\varnothing)$: \begin{equation} \bar{\theta}(\hat{x}(\varnothing)) - p \frac{1}{\beta + \gamma} \frac{f(y_2|\hat{x}(\varnothing)) - f(y_1|\hat{x}(\varnothing))}{F(y_2|\hat{x}(\varnothing)) - F(y_1|\hat{x}(\varnothing))} = 0 \end{equation} --- - [x] characterise Sender optimal threshold $x^\star(y)$ $$x^\star(y) = - \frac{ \alpha + \gamma}{\beta}\bar\theta(y) - \frac{\alpha + \beta + \gamma}{\beta}(r+b)$$ $$\Delta(y) \triangleq \hat x(y) - x^\star(y) = \frac{\alpha + \beta + \gamma}{\beta}(r+b)$$ > Proposition 3 shows that the endogenous conflict of interests is (i) increasing in the magnitude of $|r+b|$, and (ii) increasing in the precison of the signal of the Sender, $\alpha$, and (iii) decreasing in the precision of the receivers' signals, $\beta$. > Intuitively, the sender finds the aggregate participation excessive whenever $r+b>0$, and thus will choose to conceal the public signal as long as this allows to reduce participation. > Likewise, the conflict of interest is smaller, the greater is the share of information, $\frac{\beta}{\alpha + \beta + \gamma}$, ``endowed'' to the receivers. $\psi(\theta|\varnothing,x_i) = (1 - p + p\frac{\int_{y_1}^{y_2} f(y|\theta)\mathrm{d}y}{\int_{y_1}^{y_2} f(y|x_i)\mathrm{d}y})f(\theta|x_i)$ - [ ] Переделать доказательство Theorem 1 - [ ] appendix - [ ] main text - [ ] characterize $\tilde x_\varnothing$ For $y \in [y_1,y_2]$ the informed Sender prefers to conceal the signal, inducing receivers to play accor $$\Pi(x_\varnothing, y) \geq \Pi(\hat x(y),y)$$ . \begin{align} 0 & \leq \Pi(x_\varnothing, y) - \Pi(\hat x(y),y)\\ 0 & \leq (r+b + \bar \theta(y)) (F(-x_\varnothing|y) - F(-\hat x|y)) + \frac{1 }{\alpha + \gamma} (f(x_\varnothing|y) - f(\hat x |y))\\ 0 & \leq r+b + \bar \theta(y) - \frac{1 }{\alpha + \gamma} \frac{f(x_\varnothing|y) - f(\hat x |y)}{ F(x_\varnothing|y) - F(\hat x|y)} \end{align} \begin{equation} x_\varnothing = \hat x (y_2) = - \frac{h_{\theta|y}}{\beta} \bar \theta(y_2) = -\frac{1}{\beta}(\alpha y_2 + \gamma \mu) \end{equation} System that characterizes the equilibrium $(y_1,x_\varnothing)$: \begin{equation} \begin{cases} \left(r+b + \bar \theta(y_1)\right) \left( F(x_\varnothing|y_1) - F(\hat x(y_1)|y_1)\right) &- \frac{1}{\alpha + \gamma}\left(f(x_\varnothing|y_1) - f(\hat x(y_1) |y_1)\right) = 0\\ \bar \theta(x_\varnothing)\left(F(y_2|x_\varnothing) - F(y_1|x_\varnothing)\right) &- \frac{p}{\beta + \gamma}\left(f(y_2|x_\varnothing) - f(y_1 |x_\varnothing)\right) = 0\\ x_\varnothing - \hat x(y_2)&=0 \end{cases} \end{equation} There is a certain symmetry in the above system of equations: \begin{align} \text{Sender's indifference:} \quad &A^1\cdot (\Phi(P^1) - \Phi(Q^1)) + a^1 (\phi(P^1) - \phi(Q^1)) &&= 0\\ \text{Receiver's indifference:} \quad &A^2\cdot (\Phi(P^2) - \Phi(Q^2)) + a^2 (\phi(P^2) - \phi(Q^2)) &&= 0, \end{align} where $A^i,P^i,Q^i$ are linear polynomials in $x_\varnothing, y_1$ and $a_i$ are constants, all specified in the table below: |Poly|Sender's indifference|Receiver's indifference| |---|---|---| |$A$|$r+b +\frac{\gamma \mu}{\alpha+\gamma} + \frac{\alpha}{\alpha+\gamma} y$ | $\frac{\gamma \mu}{\beta+\gamma} + \frac{\beta}{\beta+\gamma} x_\varnothing$| | - $A_x$|$0$ | $\frac{\beta}{\beta+\gamma}$| |- $A_y$|$\frac{\alpha}{\alpha+\gamma}$ | $0$| |P|$\sqrt h_{x\mid y} (x_\varnothing - \frac{\alpha}{\alpha+\gamma}y - \frac{\gamma \mu}{\alpha+\gamma})$|$\sqrt h_{y\mid x} \frac{-1}{h_{y\mid x }}(\beta x_\varnothing + \gamma \mu)$| |- $P_x$|$\sqrt h_{x\mid y}$|$\sqrt h_{y\mid x} \frac{-\beta}{h_{y\mid x }}$| |- $P_y$|$- \sqrt h_{x\mid y} \frac{\alpha}{\alpha+\gamma}$|$0$| |- $A - a P$|$r+b + \bar \theta(x,y)$|$(1-p) \bar \theta(x)$| |Q|$\sqrt h_{x\mid y}\frac{-1}{h_{x\mid y}}(\alpha y + \gamma \mu)$|$\sqrt h_{y\mid x} (y- \frac{\beta}{\beta+\gamma}x_\varnothing - \frac{\gamma \mu}{\beta+\gamma})$| |- $Q_x$|$0$|$-\sqrt h_{y\mid x} \frac{\beta}{\beta+\gamma}$| |- $Q_y$|$\sqrt h_{x\mid y}\frac{-\alpha}{h_{x\mid y}}$|$\sqrt h_{y\mid x}$| |- $A - aQ$ | $r+b$ | $(1 -p )\bar\theta(x) + p \bar \theta(x,y)$| |a|$-\frac{\sqrt h_{x\mid y}}{h_{\theta\mid y}}$|$-p\frac{\sqrt h_{y\mid x}}{h_{\theta\mid x}}$| The Jacobian matrix of the system is $$\begin{bmatrix} A^1_x(\Phi(P^1) - \Phi(Q^1)) + (A^1 - a^1 P^1)\phi(P^1)P^1_x - (A^1 - a^1 Q^1)\phi(Q^1)Q^1_x & A^1_y(\Phi(P^1) - \Phi(Q^1)) + (A^1 - a^1 P^1)\phi(P^1)P^1_y - (A^1 - a^1 Q^1)\phi(Q^1)Q^1_y\\ A^2_x(\Phi(P^2) - \Phi(Q^2)) + (A^2 - a^2 P^2)\phi(P^2)P^2_x - (A^2 - a^2 Q^2)\phi(Q^2)Q^2_x & A^2_y(\Phi(P^2) - \Phi(Q^2)) + (A^2 - a^2 P^2)\phi(P^2)P^2_y - (A^2 - a^2 Q^2)\phi(Q^2)Q^2_y \end{bmatrix}$$ $$\begin{bmatrix} (r + b + \bar \theta(x,y))\phi(P^1)P^1_x & A^1_y(\Phi(P^1) - \Phi(Q^1)) + (r + b + \bar \theta(x,y))\phi(P^1)P^1_y - (r+b)\phi(Q^1)Q^1_y\\ A^2_x(\Phi(P^2) - \Phi(Q^2)) + (1-p)\bar \theta(x)\phi(P^2)P^2_x - ((1-p)\bar \theta(x) + p\bar \theta(x,y))\phi(Q^2)Q^2_x & - ((1-p)\bar \theta(x) + p\bar \theta(x,y))\phi(Q^2)Q^2_y \end{bmatrix}$$ ![](https://i.imgur.com/IfmlSHT.png) ![](https://i.imgur.com/V9Wyt6f.png) - [ ] Graphs for $y_1, y_2$, bounds of the non-disclosure region ## Welfare - [ ] Welfare-optimal disclosure policy \begin{align} \max_{y_1,y_2,x} V &=\int_\Theta \Bigg(\left(1-p + p (F(y_2|\theta) - F(y_1|\theta))\right)\cdot (r+\theta)(1-F(x_\varnothing|\theta))\\ &+ p\int_{y_1}^{y_2}(r+\theta)(1 - F(\hat x(y)|\theta))f(y|\theta)\mathrm{d}y \Bigg) \mathrm{d}F(\theta)\\ &= V_\text{Full Disclosure} + \underbrace{p\int_\Theta \int_{y_1}^{y_2} (r+\theta)\cdot (F(x_\varnothing\mid\theta) - F(\hat x(y)\mid\theta))\mathrm{d}F(\theta,y)}_{\text{Welfare gain}}\\ s.t. & \quad \bar \theta(x) = p \frac{1}{\beta + \gamma} \frac{f(y_2|x) -f(y_1 |x )}{F(y_2|x) -F(y_1 |x )} \end{align} Changing the order of integration and using the expression for the Sender's interim payoff the welfare gain can be further decomposed into the sum of Sender's "concealment gain" and the aggregate "action gain": $$\Delta V = p \underbrace{\int_{y_1}^{y_2}\left(\Pi(x_\varnothing,y) - \Pi(\hat x (y), y) \right) \mathrm{d} F(y)}_\text{Sender's Concealment Gain} - b\underbrace{\int_{y_1}^{y_2} \left(F(\hat x(y) \mid y) - F(x_\varnothing\mid y)\right) \mathrm{d} F(y)}_\text{Aggregate Action Gain} $$ The Sender's concealment gain is always positive by the definition of the interval $[y_1,y_2]$. The aggregate action gain sign depends on the magnitude of $r+b$. If $r+b >0$, then the endogenous conflict of interest is positive and concealing the public signal is the means for the Sender to induce more aggregate action (lower equilibrium threshold $x_\varnothing < \hat x(y), \forall y\in (y_1,y_2)$). If $r+b<0$ then there is a negative conflict of interest, the Sender prefers less action then in the full-disclosure equilibrium and concealing info is her means of achieving that : $$ ![](https://i.imgur.com/ir7FKwp.png) ![](https://i.imgur.com/CD2z3dg.png) We use the implicit function theorem by taking the full differential of the equilibrium system with respect to $b$. Denote $J$ the matrix of first partial derivatives of the system, then the full differential takes the matrix form: \begin{equation} \begin{bmatrix} \Delta F(x\mid y)\\0 \end{bmatrix} + J \cdot \begin{bmatrix} \frac{\partial x}{\partial b}\\ \frac{\partial y}{\partial b} \end{bmatrix} = 0 \end{equation} Naturally, \begin{equation} \begin{bmatrix} \frac{\partial x}{\partial b}\\ \frac{\partial y}{\partial b} \end{bmatrix} = - J^{-1} \cdot \begin{bmatrix} \Delta F(x\mid y)\\0 \end{bmatrix} \end{equation} The Jacobian is given by \begin{equation} \begin{bmatrix} (r + b + \bar \theta(x,y)) f(x\mid y) & \frac{\alpha}{\alpha + \gamma}\Delta F(x\mid y) - \frac{\alpha}{\alpha+\gamma} (r + b + \bar \theta(x,y))f(x\mid y) + (r+b)\frac{\alpha}{h_{x\mid y}} f(\hat x(y)\mid y)\\ \frac{\beta}{\beta + \gamma}\Delta F(y\mid x) -\frac{\beta}{h_{y\mid x}} (1-p)\bar \theta(x)f(y_2\mid x) + ((1-p)\bar \theta(x) + p\bar \theta(x,y)) \frac{\beta}{\beta + \gamma} f(y\mid x) & - ((1-p)\bar \theta(x) + p\bar \theta(x,y))f(y\mid x) \end{bmatrix}. \end{equation} In the equlibtium \begin{equation} \begin{cases} \Delta F(x\mid y) = \frac{1}{h_{\theta\mid y}\left(r+b + \bar \theta(y)\right)}\Delta f(x\mid y)\\ \Delta F(y\mid x) = \frac{p}{h_{\theta\mid x}\bar \theta(x)}\Delta f(y\mid x), \end{cases} \end{equation} so the Jacobian in the equilibrium point is given by \begin{equation} \begin{bmatrix} (r + b + \bar \theta(x,y)) f(x| y) & \left(\frac{\alpha}{h^2_{\theta| y}\left(r+b + \bar \theta(y)\right)} - \frac{\alpha}{h_{\theta| y}} (r + b + \bar \theta(x,y)) \right) f(x| y) - \left(\frac{\alpha}{h^2_{\theta| y}\left(r+b + \bar \theta(y)\right)} - (r+b)\frac{\alpha}{h_{x| y}}\right) f(\hat x| y)\\ \left( \frac{\beta p}{h^2_{\theta| x}\bar \theta(x)} -\frac{\beta}{h_{y| x}} (1-p)\bar \theta(x) \right) f(y_2| x) - \left( \frac{\beta p}{h^2_{\theta| x}\bar \theta(x)} - ((1-p)\bar \theta(x) + p\bar \theta(x,y)) \frac{\beta}{h_{\theta| x}} \right) f(y| x) & - ((1-p)\bar \theta(x) + p\bar \theta(x,y))f(y| x) \end{bmatrix}. \end{equation} --- ### Accomplished (most recent first) - [x] change the payoff of safe action to 0 - [x] rewrite the equilibrium private posterior belief - [x] change prior distribution to normal - [x] add statement about the prior - [x] edit the formulas accordingly - [x] add intermediate line into the receiver expost payoff equation - [x] Redraw Figure 1: the bold curve above has to be a straight line - [x] Set up `git` tracking - [x] Modular structure

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully