Αρι
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    [ToC] # Models ## Theory Behind Computer Vision models ## Training There are several codebases implementing different versions of YOLO: - Chris Hughes' [YOLOv7](https://github.com/Chris-hughes10/Yolov7-training/tree/main) implementation and blog - [MMYOLO]() providing multiple models from YOLO ([v5](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5),[v7](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov7),[v8](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8), [YOLOX](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolox)) and their own [RTMDet](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet). - [Ultralytics YOLOv8](https://docs.ultralytics.com/). Each codebase has different software repositories set up, dependencies, and training pipeline code (e.g. most codebases use PyTorch but MMYOLO uses their own framework called MMDetection). However, in general, model training requires the following: - Dataset in YOLO format. - ML model framework (e.g. PyTorch, TAO Toolkit, custom framework e.g. MMYOLO). - Training loop code (setting up metric, loss, optimizer, model checkpoints and other YOLO-specific components). ## [TAO Toolkit](https://docs.nvidia.com/tao/tao-toolkit/) TAO Toolkit is NVIDIA's software for training models and deploying them (using `tao-deploy`) to TensorRT Engines (optimized model) for use in subsequent pipelines (e.g. DeepStream). - YOLOv4 - OCRNet - LPDNet - LPRNet ### [Quantization-Aware Training](https://docs.nvidia.com/tao/tao-toolkit/text/qat_and_amp_for_training.html#quantization-aware-training) ### [Mixed Precision Training](https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html) MPT adopts FP16 for compute-intensive yet precision-insensitive operations (general matrix multiplication GEMM) while employing FP32 for precision-sensitive functions (batch normalization). Meanwhile, activations and gradients, which contribute to most of the memory consumption, are represented in FP16, while the weights are in FP32 to reduce the round-off error that appears in long-term accumulation of gradient updates. The issue here is [**underflow**](https://www.ijcai.org/proceedings/2020/0404.pdf) and reduction overflow (norm, softmax). Simple example of reduction overflow: `a=torch.cuda.HalfTensor(4094).fill(4.0)` equals to 256 `a=torch.cuda.HalfTensor(4095).fill(4.0)` equals \infty Typically, gradients in DNN can be smaller than 10−10, and the smallest value that FP16 can represent is only around 6×10−8. That is, values below 6 × 10−8 will be rounded to zero. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/e5a44cdc-8640-4f11-8134-839c29fb0752) _`imgt.1`_ FP32 training ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/7cab5260-d05d-4954-a79e-92e538fc4a3d) Using FP32 weights as master weights ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/e226566a-a9b2-4af9-9a31-f1c4851fb62b) _`imgt.2`_ MPT (Blue parts are accelerated, Orange part is overhead) ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/ec8b74d4-b5ea-45b7-b01c-296e7543f847) _`imgt.3`_ More info [1](https://on-demand.gputechconf.com/gtc-taiwan/2018/pdf/5-1_Internal%20Speaker_Michael%20Carilli_PDF%20For%20Sharing.pdf) ## Datasets ### Data Annotation Data annotation is the 2nd most important step (after data collection) in creating a model dataset. In our case, this is where ground truth bounding boxes are manually drawn on each image depending on the specific task (e.g. for OCR, draw boxes around letters). There are multiple options available, but the most useful and tested are: 1. There is Amazon's [MTurks](https://www.mturk.com/) (rebranded to a newer service [SageMaker Ground Truth](https://aws.amazon.com/sagemaker/groundtruth/)) which offer paid annotation services. 2. An in-house annotation server can be created based on open source [CVAT](https://opencv.github.io/cvat/about/) tool which can also be hosted on ZenTech servers (requires additional setup/networking effort). ### Data Augmentation Using the [Albumentations](https://albumentations.ai/docs/examples/) library we can augment images with transformations (e.g. crop, resize, rotate) by creating an augmentation [Compose](https://albumentations.ai/docs/api_reference/core/composition/) pipeline. ## Model Optimization & Acceleration ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/c5f837f0-0633-4b18-b7fc-4e5706079e8a) _`imgc.1`_ **TRT** (TensorRT - our conversion tool and _runtime engine?_) can take in as input [tensorflow](https://github.com/tensorflow/tensorrt), [pytorch](https://github.com/pytorch/TensorRT) or ONNX [recommended way](#ONNX - Open Neural Network Exchange) models and convert the, to a hardware optimized model for running inference on GPU. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/379d2be5-287f-4673-868f-8f0f55a36cc1) _`imgc.2`_ ### ONNX - Open Neural Network Exchange - ONNX acts as an intermediary and models can be exported in ONNX format from any framework. - Most efficient runtime performance **while using an automatic parser** - ONNX models are parsed automatically by TRT - If a layer of the NN fails 2 options: - Write custom TRT plugin for ONNX parser - `ONNX-Graphsurgeon` ### Hardware compatibility Convert model to TRT on the **deployment** GPU, if not make sure that the [Compute Capability](#Compute Capability) of the **target** is **at least as high** as the **dev**. ### Workflow of Tensor RT (TRT) - Exporting my model to a format that TRT understands (discussed above) - **Inference** batch size (throughput vs latency) 2 batch modes supported in TRT: - Explicit : Exact batch size (when working withONNX) - Dynamic : Range of batch shapes - Precision (**INT8**, **FP16**, FP32, TF32 > [Compute Capability](#Compute Capability) > 8.0) FP32 is usually used in training but lower precision in inference can yield performance optimization without losing on accuracy. - [Mixed Precision Training (Discussed in Training sector](https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html) - Some GPU cards favor INT8 Coupled with [QAT](https://developer.nvidia.com/blog/improving-int8-accuracy-using-quantization-aware-training-and-tao-toolkit/) at training, [FP32 accuracy can be achieved only using INT8](https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/). Quantization is a process of determining a way of binning the weights. - Conversion path, discussed above, selection is based on: - performance needs - [supported layers](https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html) - Runtime, optimized pipelines contribute to inference performance. It's **equally** important to actual model optimizations. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/83b45c5c-6843-4f37-889e-2410e31f3848) _`imgc.3`_ ### How does TRT optimize our networks? As gradient calculations are not an issue in inference TRT can empirically optimize abiding to the following 3 principles: - Copying **large** matrices and operating on them is faster than doing so on smaller ones - Minimize CPU-GPU communication - Keeping data in place aka minimize moving and copying In detail: This is **layer and tensor fusion** as it was seen in _`imgc.2`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/58ee3e20-a5d3-4a7e-9e4b-ca60641e8338) _`imgc.4`_ It's based on vertical/horizontal fusion and on eliminating unused layers. Minimize information loss between FP32 (training **accuracy**) and INT8, FP16 (depends on what is chosen for inference). A calibration dataset is used to make this process automatic. Usually calibration is only needed when going from FP32->INT8 ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/f7a49adf-9110-4cbb-b452-daad1cf9719a) _`imgc.5`_ **Dynamic tensor memory** reduces memory footprint and manages allocation for each tensor **only** when it's being used. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/39bbc7ba-c616-4429-865d-68c7e65d25ba) _`imgc.6`_ **Kernel auto-tuning** selects best data layers and algorithms based on the target GPU. Baseline is cuDNN / cuBLAS. [For small batch size direct convolution kernels are used with optimal tiling](https://ccrma.stanford.edu/~jos/ReviewFourier/FFT_Convolution_vs_Direct.html). [Winograd](https://www.codetd.com/en/article/12633653), [FFT1](https://arxiv.org/pdf/2010.04257.pdf) [FFT2](https://medium.com/analytics-vidhya/fast-cnn-substitution-of-convolution-layers-with-fft-layers-a9ed3bfdc99a) Essentially the fastest kernel for each layer depending on the target platform is used. Can process **multiple input streams** in **parallel**. ~~ **Not applicable** to Computer Vision but TRT dynamically generates kernels to optimize RNNs over time ~~ ### [Why are Tensor cores so important?](https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/) ### Compute Capability of different GPU hardware Training [compute capability](https://developer.nvidia.com/cuda-gpus#compute) $\ge$ 6.1, inference $\ge$ 5.3 [Support matrix for different caps](https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#hardware-precision-matrix) ### Which Layers are supported by TRT? (2017) - [ ] Convolution - [ ] LSTM and GRU - [ ] Activation: ReLU, tanh, sigmoid - [ ] Pooling: max and average - [ ] Scaling - [ ] Element wise operations - [ ] LRN - [ ] Fully-connected - [ ] SoftMax - [ ] Deconvolution # Pipelines ## Deepstream ### DS (Deepstream) Pipeline ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/74d9fd94-c77a-4923-8d90-7082a5a639a5) _`imgd.1`_ **[DeepStream SDK](https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html) is based on the GStreamer framework**. Plugins, input, outputs, and control parameters and metadata from gstreamer buffers can be found [here](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_Intro.html). It can be interfaced using **C/C++, Python, Graph Composer**. Extensions (such as Triton Inference components or TensorRT, discussed later) can be found [here](https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/ExtensionsManual/TensorRTExtension.html). The application config can be broken apart into groups. [In detail](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_ref_app_deepstream.html#Configuration-Groups): - Application Group Application configurations that are not related to a specific component. - Tiled-display Group Tiled display in the application. - Source Group Source properties. There can be multiple sources. The groups must be named as: [source0], [source1] … - Streammux Group Specify properties and modify behavior of the streammux component. - Preprocess Group Specify properties and modify behavior of the preprocess component. - Primary GIE and Secondary GIE Group Specify properties and modify behavior of the primary GIE. Specify properties and modify behavior of the secondary GIE. The groups must be named as: [secondary-gie0], [secondary-gie1] … - Tracker Group Specify properties and modify behavior of the object tracker. - Message Converter Group Specify properties and modify behavior of the message converter component. - Message Consumer Group Specify properties and modify behavior of message consumer components. The pipeline can contain multiple message consumer components. Groups must be named as [message-consumer0], [message-consumer1] … - OSD Group (ON SCREEN DISPLAY) Specify properties and modify the on-screen display (OSD) component that overlays text and rectangles on the frame. - Sink Group Specify properties and modify behavior of sink components that represent outputs such as displays and files for rendering, encoding, and file saving. The pipeline can contain multiple sinks. Groups must be named as: [sink0], [sink1] … - Tests Group Diagnostics and debugging. This group is experimental. - NvDs-analytics Group Specify nvdsanalytics plugin configuration file, and to add the plugin in the application ### GC (Graph Composer) A toolkit inside Deepstream that makes our life easier with a GUI to design our DS pipeline. Workflow: ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/f71c5f2e-a0aa-4ca7-8de2-0c34f5978441) _`imgd.2`_ Example of a graph in GraphComposer ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/0caa7b28-d8f6-4dc2-b5fb-9082c9884013) _`imgd.3`_ In the exposed docker #5 navigate to `/opt/nvidia/deepstream/deepstream-6.1/reference_graphs/deepstream-test5`. This is a sample app that demonstrates device-to-cloud and cloud-to-device messaging, Smart Record and model on-the-fly update. An integral part of GC is [Container Builder](https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/GraphComposer_Container_Builder.html). If it wasn't for that [this](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_docker_containers.html#creating-custom-deepstream-docker-for-dgpu-using-deepstreamsdk-package) would be needed. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/3b216d25-ef41-4270-98db-4e6a4d14d47a) _`imgd.4`_ ### [Python Bindings](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/blob/master/HOWTO.md) To compile the bindings [do](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/blob/master/bindings/README.md). A DS pipeline can be constructed only using Gst Python as it can be seen from the [sample applications](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps). For cross-compilation use [this Dockerifle](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/blob/master/bindings/qemu_docker/ubuntu-cross-aarch64.Dockerfile) More in depth info about Allocations, MemManagement, String Access, Casting, Callback Function Registration, Optimizations and Utilities, Image Data Access can be found in the title's link. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/7d4b6901-340f-4e5e-986c-d7caf2ecd39c) _`imgd.5`_ Includes a Preprocess, RTSP I/O, Analytics applications ### C/C++ Includes a wide variety of extra sample apps including Smart Record, Mask-RCNN, AMQP, Azure MQTT, DS as an NMOS Node, transceive video/metadata over RDMA ### Comparison between the 3 (Python vs C/C++ vs Graph Composer) For the easiest stream pipeline: filesrc [H264] → decode → nvstreammux → nvinfer (primary detector) → nvdsosd → renderer. - C/C++ can be found in `/opt/nvidia/deepstream/deepstream-6.1/sources/apps/sample_apps/deepstream-test1` - [Python app](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/blob/master/apps/deepstream-test1/deepstream_test_1.py) - Graph ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/6f36e1ec-dd60-4344-a026-a83f0b2fccb2) ### Relevant Deepstream Sample Apps by NVIDIA [multi-stream pipeline performing 4-class object detection - now also supports triton inference server, no-display mode, file-loop and silent mode](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps/deepstream-test3) [Uses NvDsAnalytics and sends data to cloud/microservice through Kafka](https://github.com/NVIDIA-AI-IOT/deepstream-occupancy-analytics) [NvDsAnalytics](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvdsanalytics.html) ### Optimizations [Crop before inference - PREPROCESSING](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps/deepstream-preprocess-test) ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/cf7e6784-f556-486e-a7be-99aea384856b) _`imgd.7`_ [Introductory video on optimizing some parts of deepstream](https://www.youtube.com/watch?v=Or8vfydL69s) ## Gstreamer # Systems ## Monitoring ### [NVIDIA Memory Profiler](https://docs.nvidia.com/cuda/profiler-users-guide/index.html#visual-profiler) NVIDIA's Tool for profiling GPU memory, utilization etc. Need to learn this for subsequent QA and optimization of hardware. ## Orchestration In our Deepstream/Azure pipeline it might be wise to include Grafana/Prometheus/[Node Exporter](https://prometheus.io/docs/guides/node-exporter/). To orchestrate our containers, K8 might be replaced by azure container service since we'll be using Azure. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/63cbef5a-8ade-481f-ae5e-b9a95b24b9f4) _`imgs.1`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/8c2d29d5-6057-41cc-9249-0918421d3bc1) _`imgs.2`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/5177d592-7ebb-4468-a0c9-bc033778e147) _`imgs.3`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/31569d0d-3801-4a9a-9af3-1b1327b9977f) _`imgs.4`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/5a0faa30-1fec-4345-ac67-7a812270989f) _`imgs.5`_ ## Integration ### [Triton Inference Server Engine ¡READ-ME!](https://github.com/triton-inference-server/server/blob/r22.04/README.md#documentation) [TRT Inference Server](https://www.youtube.com/watch?v=SekmR9YH4xQ) > Integrates with NGINX, Kubernetes, and Kubeflow for a complete solution for real‑time and offline data center AI inference [..] It supports all popular AI frameworks and maximizes GPU utilization by serving multiple models per GPU and dynamically batching client requests As it is discussed in [Deepstream](#Deepstream), the Deepstream SDK consists of decoupled plugins and extensions. One of those plugins is [`Gst-nvmsgbroker`](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvmsgbroker.html#azure-mqtt-protocol-adapter-libraries?azure-portal=true), which enables stream message communication with Kafka, **Azure IoT**, MQTT etc. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/6a420f3c-897f-4253-9e19-6e674ed5e4bd) _`imgc.7`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/b4e131d3-df05-4cc5-890c-9c2f762a3f26) _`imgc.8`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/6d4ba16c-3c21-4c0a-8d67-9bcdbc9fe180) _`imgc.9`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/93d3349b-0857-412c-856a-b8606f49b098) _`imgc.10`_ ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/4886df82-e33a-44bc-935e-9987035adfe3) _`imgc.11`_ A **runtime** option great for serving models over HTTP and multi-GPU inference. _TensorRT inference server = Triton_ If maximum **performance** is required, a Python/C++ runtime can be used instead of Triton, this obviously requires more effort. but gives full control of TRT engine. ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/718d492f-542f-4b92-8e18-5886e2f57978) _`imgc.12`_ ## Containerized DeepStream ![image.png](http://srv-source.zentech.local/ZenVision/804edc39-a837-4c8b-b2af-c734c4ce7a7a/_apis/wiki/wikis/0964d72d-8e73-4272-8fe3-6454b6f54951/pages/5/comments/attachments/c78fa661-996a-4c44-81d0-6bcb0ef3d7d8) _`imgd.6`_ ## Edge Deployment ### Jetson (Edge devices) [Deepstream Python bindings for Jetson](https://gist.github.com/priyanshthakore/bd37ff636985640af1e97ad19942d02a)

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully