--- tags: Communication System Design, ss, ncu author: N0-Ball title: Modulation GA: UA-208228992-1 --- # Intro - first form of modulation used in radio transmission - MF band (medium frequency, 300 kHz - 3 MHz) - Basic Form: - DSB-LC (Double Side Band) - DSB-SC - offers narrow bandwidth transmission - $B = 2 \times f_{max}$ (DSB-LC) - Very inefficient in use of transmit power - Message signal is $k_a m(t)$ # DSB-LC ## Modulate **With the modulated signal** $$ \begin{split} v_{AM}(t) &= A_c \cos \left( \omega_c t \right) \times \left[ 1 + k_am(t) \right] \\[1em] &= A_c \cos \left( \omega_c t \right) + k_aA_cm(t) \cos \left( \omega_c t\right) \end{split} $$ **Considering** $k_am(t) = k_a \cos \left( \omega_m t \right)$ $$ \begin{split} &v_{AM}(t) = A_c \cos \left( \omega_c t \right) + \frac{1}{2}k_aA_c \cos \left( \omega_c t + \omega_m t \right) + \frac{1}{2}k_aA_c \cos \left( \omega_c t - \omega_m t \right) \end{split} $$ ![](https://i.ytimg.com/vi/uG0WDVnibOA/maxresdefault.jpg) :::info - Two copies of m(t) appear on either side of $f_c$ - Power of each term: - Carrier: $\frac{1}{2} A_c^2$ - Upper sideband: $\frac{\left( \frac{1}{2}k_aA_c \right)^2}{2}$ - Lower sideband: $\frac{\left( \frac{1}{2}k_aA_c \right)^2}{2}$ - if $k_a = 1$(maximum value), ratio of message power to carrier power = 0.5 ::: :::danger **Typical mean value for $k_a = 0.3$** $$ \frac{P_{msg}}{P_c} = \frac{1}{2}k_a^2 = 0.045 $$ **Less than 5% of transmitted power is in the message** ::: ## Demodulate - Apply large AM signal to a diode $v_{AM}(t) = A_c \cos \left( \omega_c t \right) \times \left[ 1 + k_am(t) \right]$ - Sole action of carrier is to switch the demoduulator diode in the AM receiver 1. Generates switching function s(t) at carrier frequency - $s(t) = \frac{1}{2} + \frac{2}{\pi}\left( \cos \left( \omega_ct \right) - \frac{1}{3} \cos \left( 3 \omega_ct \right) + \cdots \right)$ 2. Multiply s(t) by AM signal - $x(t) = v_{AM}(t) \times \left(\frac{1}{2} + \frac{2}{\pi}\cos \left( \omega_ct \right) - \frac{2}{3\pi} \cos \left( 3 \omega_ct \right) + \cdots \right)$ 3. for convenience, set k~a~ = 1 4. $\frac{2}{\pi} A_c \left( \cos \left( \omega_c t \right) \right)^2 = \frac{2}{\pi}A_c\left( 1 + \frac{1}{2} \cos \left(2 \omega_c t \right) \right) = \frac{2}{\pi} A_c + \frac{1}{\pi} A_c \cos \left( A_c \cos \left( 2 \omega_c t \right) \right)$ 5. Place a low pass filter at the output of the diode to get the following lower-frequency terms. - $y(t) = \frac{2}{\pi}A_c + \frac{1}{\pi}A_cm(t)$ 6. Output contains a DC term and the message signal - Wanted signal has amplitude proportional to received carrier voltage A~c~ - Control gain of AM receiver to make output signal of demodulator constant - requires Automatic Gain Control (AGC) # Diode Detector - Since mesage abides as the amplitude of the received signal, detecting amplitude change = obtaining message! ### Adventage - verfy simple circuit - Very low cost ### Disadventage - Poor linearity - distorion - Poor selectivity - Affected by selective fading