--- title: Determinant tags: Linear algebra GA: G-77TT93X4N1 --- # Determinant > Determinant is a function that maps a $n\times n$ matrix to a real value. ## Geometric meaning Consider a matrix $$ A = \begin{bmatrix} {\bf v}_1 & {\bf v}_2 & \cdots & {\bf v}_n \end{bmatrix}, $$ where $c_i\in\mathbb{R}^n$ are column vectors. Determinant is the "volume" of the $n$-dimensional parallelepiped that is constructed by $c_i$'s. --- ## Notation $$ det(A) = |A| = D({\bf v}_1, \cdots, {\bf v}_n) $$ --- ## Definition 1. Determinant of identity matrix is one $$ det(I_n) = 1 $$ 2. Antisymmetry $$ D(\cdots, {\bf v}_j, \cdots, {\bf v}_k,\cdots) = -D( \cdots, {\bf v}_k, \cdots, {\bf v}_j,\cdots) $$ 3. Linearity in each argument: $$ D(\cdots, \alpha{\bf v}_k, \cdots) = \alpha D( \cdots, {\bf v}_k, \cdots) $$ and $$ D(\cdots, {\bf u}_k+{\bf v}_k, \cdots) = D( \cdots, {\bf u}_k, \cdots) + D( \cdots, {\bf v}_k, \cdots) $$ --- ## Properties > The proof of these properties are given in [Determinant 2](https://hackmd.io/@NYCUAM/LA_determinant_2). 1. Two equal columns, then determinant equals to zero. 2. A column of zero, then determinant equals to zero. 3. Preservation under “column replacement” $$ D(\cdots, {\bf v}_j+\alpha{\bf v}_k, \cdots, {\bf v}_k,\cdots) = D( \cdots, {\bf v}_j, \cdots, {\bf v}_k,\cdots). $$ 4. If $A$ is singular, then $\text{det}(A) =0$. 5. Determinant of upper triangular matrix is the product of its diagonal elements, i.e., $$ \left|\begin{matrix} d_1 & * & \cdots & *\\ 0 & d_2 & \cdots & *\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \\ \end{matrix}\right| = d_1d_2\cdots d_n. $$ * Remark: Same conclusion applied to lower triangular matrices. 6. $\text{det}(AB) = \text{det}(A)\text{det}(B)$. 7. $\text{det}(A^T) = \text{det}(A)$. ## References * [Linear Algebra Done Wrong: Ch2](https://www.math.brown.edu/streil/papers/LADW/LADW.html)