Machine Learning

NTNU 機器學習

Back to Note Overview

Score

  • Homework 30
  • Quiz 5
  • Q&A 10
  • Examination 25
  • Presentation 30

Note

Ch.01 Introduction

Traditional AI v.s. ML

  • Traditional AI
    • 手動增加 explicit rules
  • ML
    • 自動從大量範例中學習規則
  • DL
    • using parallel simple algorithms to extract rules

Regularity

θ: parameter

  • y=f(x)
    • 連 form 不知道
  • y=f(x|θ)
    • 表示知道 form 不知道 parameter
    • 從 training data 裡面找到 parameter
  • Linear Model
    • y=a1x+a0,θ=(a0,a1)
  • Quadratic model
    • y=a2x2+a1x+a0,θ=(a0,a1,a2)
  • Gaussian model
    • y=12πσexp(xμ)22σ2,θ=(σ,μ)T

Ch.02 Supervised Learning

Ch.04 Parametric Methods

Ch.05 Multivariate Methods

Ch.06 Demensionality Reduction

Ch.09 Decision Trees

Ch.11 Multilayer Perceptrons

Ch.12 Deep Learning

Quiz

0914

  • What kind of probability is often used to expressed associations among data?
  • Regularities of data are often expressed as __.
  • Address the difference between the expressions
    f(x)
    and
    f(x|q)