# Machine Learning NTNU 機器學習 ##### [Back to Note Overview](https://hackmd.io/@NTNUCSIE112/NTNUNote) {%hackmd @sophie8909/pink_theme %} ## Score - Homework 30 - Quiz 5 - Q&A 10 - Examination 25 - Presentation 30 ## Note ### Ch.01 Introduction #### Traditional AI v.s. ML - Traditional AI - 手動增加 explicit rules - ML - 自動從大量範例中學習規則 - DL - using parallel simple algorithms to extract rules #### Regularity $\theta$: parameter - $y=f(x)$ - 連 form 不知道 - $y=f(x|\theta)$ - 表示知道 form 不知道 parameter - 從 training data 裡面找到 parameter - Linear Model - $y=a_1x+a_0, \theta = (a_0, a_1)$ - Quadratic model - $y=a_2x^2+a_1x+a_0, \theta = (a_0, a_1, a_2)$ - Gaussian model - $y=\frac{1}{\sqrt{2\pi}\sigma}\exp\frac{(x-\mu)^2}{2\sigma^2}, \theta = (\sigma, \mu)^T$ ### Ch.02 Supervised Learning ### Ch.04 Parametric Methods ### Ch.05 Multivariate Methods ### Ch.06 Demensionality Reduction ### Ch.09 Decision Trees ### Ch.11 Multilayer Perceptrons ### Ch.12 Deep Learning ### Quiz #### 0914 - What kind of probability is often used to expressed associations among data? - Regularities of data are often expressed as __. - Address the difference between the expressions $f(x)$ and $f(x|q)$