Try   HackMD

72.Edit Distance

tags: Hard,String,DP

72. Edit Distance

題目描述

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

範例

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Constraints:

  • 0 <= word1.length, word2.length <= 500
  • word1 and word2 consist of lowercase English letters.

解答

C++

思路:
  1. 把word1變成word2, 有增刪改三種動作可以做, 求最小的操作次數
  2. 思考基本case
    2.1. 當word1 or word2其中之一為空, 則次數為非空者的長度
    2.2. 當前雙方第一個字符相同, 則考慮word1[1:]及word2[1:] substring的minDistance
    2.3. 當前雙方第一個字符不同, 三種動作可做:
    • 增: 接下來只需考慮word1[:] 及word2[1:]的maxDistance
    • 刪: 接下來只需考慮word1[1:]及word2[:]的maxDistance
    • 改: 接下來只需考慮word1[1:]及word2[1:]的maxDistance
  3. 避免解重複substring的maxDistance用DP
  4. 用類似Longest common subsequence作法, 每次多考慮word1 or word2 一個字符, 根據2.的條件計算DP
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); vector<vector<int>> dp(m+1, vector<int>(n+1, 0)); // If one of word is empty for(int i = 0; i <= m; i++) dp[i][0] = i; for(int i = 0; i <= n; i++) dp[0][i] = i; for(int i = 1; i <= m; i++) { for(int j = 1; j <= n; j++) { if(word1[i-1]==word2[j-1]) dp[i][j] = dp[i-1][j-1]; else { dp[i][j] = 1 + min({ dp[i][j-1], // insert dp[i-1][j], // delete dp[i-1][j-1] // replace }); } } } return dp[m][n]; } };

Time: \(O(mn)\)
Extra Space: \(O(mn)\)

XD Feb 27, 2023

Reference

回到題目列表