Try   HackMD

63.Unique Paths II

tags: Medium,Array,DP

63. Unique Paths II

題目描述

You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 109.

範例

Example 1:

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

Example 2:

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

Input: obstacleGrid = [[0,1],[0,0]]
Output: 1

Constraints:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] is 0 or 1.

解答

Python

class Solution: def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int: m, n = len(obstacleGrid), len(obstacleGrid[0]) dp = [[0] * (n + 1) for _ in range(m + 1)] dp[0][1] = 1 for i in range(m): for j in range(n): dp[i + 1][j + 1] = dp[i + 1][j] + dp[i][j + 1] if obstacleGrid[i][j] == 0 else 0 return dp[-1][-1]

Yen-Chi ChenSun, Aug 13, 2023

Reference

回到題目列表