518.Coin Change II
===
###### tags: `Medium`,`Array`,`DP`
[518. Coin Change II](https://leetcode.com/problems/coin-change-ii/)
### 題目描述
You are given an integer array `coins` representing coins of different denominations and an integer `amount` representing a total amount of money.
Return *the number of combinations that make up that amount.* If that amount of money cannot be made up by any combination of the coins, return `0`.
You may assume that you have an infinite number of each kind of coin.
The answer is **guaranteed** to fit into a signed **32-bit** integer.
### 範例
**Example 1:**
```
Input: amount = 5, coins = [1,2,5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
```
**Example 2:**
```
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
```
**Example 3:**
```
Input: amount = 10, coins = [10]
Output: 1
```
**Constraints**:
* 1 <= `coins.length` <= 300
* 1 <= `coins[i]` <= 5000
* All the values of `coins` are **unique**.
* 0 <= `amount` <= 5000
### 解答
#### TypeScript
```typescript!
function change(amount: number, coins: number[]): number {
const dp: number[] = new Array(amount + 1).fill(0);
dp[0] = 1;
for (const coin of coins) {
for (let i = coin; i <= amount; i++) {
dp[i] += dp[i - coin];
}
}
return dp[amount];
}
```
> 思路:DP
> 1. 建立一個 DP table, `dp[i]` 代表組成 `i` 元的組合數
> 2. `dp[0] = 1`, 代表組成 0 元的組合數為 1 (都不選)
> 3. `dp[i - coin]` 代表組成 `i - coin` 元的組合數,因為當我們在湊出 `i - coin` 的組合數基礎上,再加上 `coin` 就可以湊出 `i` 元的一種新組合
> 以 coins = [1, 2], amount = 3 為例:
> dp[0] = 1 => []
> dp[1] = dp[1 - 1] = 1 => [1]
> dp[2] = dp[2 - 1] + dp[2 - 2] = 2 => [1, 1], [2]
> dp[3] = dp[3 - 1] + dp[3 - 2] = 3 => [1, 1, 1], [1, 2], [2, 1]
> 4. 遍歷 coins,並從 coin 開始遍歷 dp,直到 amount,然後更新 `dp[i]` 把每種 `dp[i - coin]` 的組合數加上去
> 5. 回傳 `dp[amount]`
> [name=Sheep][time=Fri, Aug 11, 2023]
#### C++
``` cpp=
class Solution {
public:
int change(int amount, vector<int>& coins) {
ios_base::sync_with_stdio(0); cin.tie(0);
int numCoins = coins.size();
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (const int coin : coins) {
for (int currHold = coin; currHold <= amount; currHold ++) {
dp[currHold] += dp[currHold - coin];
}
}
return dp[amount];
}
};
```
> [name=Jerry Wu][time=11 August, 2023]
### Reference
[回到題目列表](https://hackmd.io/@Marsgoat/leetcode_every_day)