518.Coin Change II === ###### tags: `Medium`,`Array`,`DP` [518. Coin Change II](https://leetcode.com/problems/coin-change-ii/) ### 題目描述 You are given an integer array `coins` representing coins of different denominations and an integer `amount` representing a total amount of money. Return *the number of combinations that make up that amount.* If that amount of money cannot be made up by any combination of the coins, return `0`. You may assume that you have an infinite number of each kind of coin. The answer is **guaranteed** to fit into a signed **32-bit** integer. ### 範例 **Example 1:** ``` Input: amount = 5, coins = [1,2,5] Output: 4 Explanation: there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 ``` **Example 2:** ``` Input: amount = 3, coins = [2] Output: 0 Explanation: the amount of 3 cannot be made up just with coins of 2. ``` **Example 3:** ``` Input: amount = 10, coins = [10] Output: 1 ``` **Constraints**: * 1 <= `coins.length` <= 300 * 1 <= `coins[i]` <= 5000 * All the values of `coins` are **unique**. * 0 <= `amount` <= 5000 ### 解答 #### TypeScript ```typescript! function change(amount: number, coins: number[]): number { const dp: number[] = new Array(amount + 1).fill(0); dp[0] = 1; for (const coin of coins) { for (let i = coin; i <= amount; i++) { dp[i] += dp[i - coin]; } } return dp[amount]; } ``` > 思路:DP > 1. 建立一個 DP table, `dp[i]` 代表組成 `i` 元的組合數 > 2. `dp[0] = 1`, 代表組成 0 元的組合數為 1 (都不選) > 3. `dp[i - coin]` 代表組成 `i - coin` 元的組合數,因為當我們在湊出 `i - coin` 的組合數基礎上,再加上 `coin` 就可以湊出 `i` 元的一種新組合 > 以 coins = [1, 2], amount = 3 為例: > dp[0] = 1 => [] > dp[1] = dp[1 - 1] = 1 => [1] > dp[2] = dp[2 - 1] + dp[2 - 2] = 2 => [1, 1], [2] > dp[3] = dp[3 - 1] + dp[3 - 2] = 3 => [1, 1, 1], [1, 2], [2, 1] > 4. 遍歷 coins,並從 coin 開始遍歷 dp,直到 amount,然後更新 `dp[i]` 把每種 `dp[i - coin]` 的組合數加上去 > 5. 回傳 `dp[amount]` > [name=Sheep][time=Fri, Aug 11, 2023] #### C++ ``` cpp= class Solution { public: int change(int amount, vector<int>& coins) { ios_base::sync_with_stdio(0); cin.tie(0); int numCoins = coins.size(); vector<int> dp(amount + 1, 0); dp[0] = 1; for (const int coin : coins) { for (int currHold = coin; currHold <= amount; currHold ++) { dp[currHold] += dp[currHold - coin]; } } return dp[amount]; } }; ``` > [name=Jerry Wu][time=11 August, 2023] ### Reference [回到題目列表](https://hackmd.io/@Marsgoat/leetcode_every_day)