Medium
,Array
,Binary Search
33. Search in Rotated Sorted Array
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length)
such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3
Input: nums = [1], target = 0
Output: -1
Constraints:
nums.length
<= 5000nums[i]
<= 104nums
are unique.nums
is an ascending array that is possibly rotated.target
<= 104
function search(nums, target) {
let min = 0;
let max = nums.length - 1;
while (max >= min) {
const mid = (max + min) >> 1;
if (nums[mid] === target) return mid;
if (nums[mid] >= nums[min]) {
if (target >= nums[min] && target < nums[mid]) {
max = mid - 1;
} else {
min = mid + 1;
}
} else {
if (target <= nums[max] && target > nums[mid]) {
min = mid + 1;
} else {
max = mid - 1;
}
}
}
return -1;
}
MarsgoatAug 8, 2023
public class Solution {
public int Search(int[] nums, int target) {
bool inLeft = target >= nums[0];
int left = 0;
int right = nums.Length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
if (inLeft && nums[mid] < nums[left]) {
right = mid - 1;
} else if (!inLeft && nums[mid] > nums[right]) {
left = mid + 1;
} else {
if (nums[mid] > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
}
return -1;
}
}
JimAug 8, 2023