1557.Minimum Number of Vertices to Reach All Nodes === ###### tags: `Medium`,`Graph` [1557. Minimum Number of Vertices to Reach All Nodes](https://leetcode.com/problems/minimum-number-of-vertices-to-reach-all-nodes/) ### 題目描述 Given a **directed acyclic graph**, with `n` vertices numbered from `0` to `n-1`, and an array `edges` where `edges[i]` = [$from_i$, $to_i$] represents a directed edge from node $from_i$ to node $to_i$. Find *the smallest set of vertices from which all nodes in the graph are reachable.* It's guaranteed that a unique solution exists. Notice that you can return the vertices in any order. ### 範例 **Example 1:** ![](https://assets.leetcode.com/uploads/2020/07/07/untitled22.png) ``` Input: n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]] Output: [0,3] Explanation: It's not possible to reach all the nodes from a single vertex. From 0 we can reach [0,1,2,5]. From 3 we can reach [3,4,2,5]. So we output [0,3]. ``` **Example 2:** ![](https://assets.leetcode.com/uploads/2020/07/07/untitled.png) ``` Input: n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]] Output: [0,2,3] Explanation: Notice that vertices 0, 3 and 2 are not reachable from any other node, so we must include them. Also any of these vertices can reach nodes 1 and 4. ``` **Constraints**: * 2 <= `n` <= 10^5^ * 1 <= `edges.length` <= min(10^5^, n * (n - 1) / 2) * `edges[i].length` == 2 * 0 <= $from_i$, $to_i$ < `n` * All pairs ($from_i$, $to_i$) are distinct. ### 解答 #### Python ```python= class Solution: def findSmallestSetOfVertices(self, n: int, edges: List[List[int]]) -> List[int]: return list(set(range(n)) - set(to for _, to in edges)) ``` > [name=Yen-Chi Chen][time=Thu, May 18, 2023] #### Javascript ```javascript= function findSmallestSetOfVertices(n, edges) { const set = new Set(); for (const [from, to] of edges) { set.add(to); } const result = []; for (let i = 0; i < n; i++) { if (!set.has(i)) result.push(i); } return result; } ``` > 這題直接用Set來記錄就行了,讓我想到1579題,當時天真的以為用Set就可以ㄏㄏ > [name=Marsgoat][time=Thu, May 18, 2023] ### Reference [回到題目列表](https://hackmd.io/@Marsgoat/leetcode_every_day)