1539.Kth Missing Positive Number
===
###### tags: `Easy`,`Array`,`Binary Search`
[1539. Kth Missing Positive Number](https://leetcode.com/problems/kth-missing-positive-number/)
### 題目描述
Given an array `arr` of positive integers sorted in a **strictly increasing order**, and an integer `k`.
Return *the k^th^ **positive** integer that is **missing** from this array*.
### 範例
**Example 1:**
```
Input: arr = [2,3,4,7,11], k = 5
Output: 9
Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...]. The 5th missing positive integer is 9.
```
**Example 2:**
```
Input: arr = [1,2,3,4], k = 2
Output: 6
Explanation: The missing positive integers are [5,6,7,...]. The 2nd missing positive integer is 6.
```
**Constraints**:
* 1 <= `arr.length` <= 1000
* 1 <= `arr[i]` <= 1000
* 1 <= `k` <= 1000
* `arr[i]` < `arr[j]` for 1 <= `i` < `j` <= `arr.length`
**Follow up**:
Could you solve this problem in less than O(n) complexity?
### 解答
#### Python
```python=
class Solution:
def findKthPositive(self, arr: List[int], k: int) -> int:
def feasible(mid) -> bool:
return arr[mid] - mid - 1 < k
l, r = 0, len(arr)
while l < r:
mid = l + (r - l) // 2
if feasible(mid):
l = mid + 1
else:
r = mid
return l + k
```
> [name=Ron Chen][time=Mon, Mar 6, 2023]
#### Javascript
```javascript=
function findKthPositive(arr, k) {
let left = 0;
let right = arr.length - 1;
let missing = 0;
while (left <= right) {
const mid = ~~((left + right) / 2);
missing = arr[mid] - mid - 1;
if (missing < k) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return left + k;
}
```
> 學習了,本來還暴力解,不過也是會過ㄎㄎ
> [name=Marsgoat][time=Mon, Mar 6, 2023]
### Reference
[回到題目列表](https://hackmd.io/@Marsgoat/leetcode_every_day)