Medium
,Tree
,Binary Tree
,DFS
1339. Maximum Product of Splitted Binary Tree
Given the root
of a binary tree, split the binary tree into two subtrees by removing one edge such that the product of the sums of the subtrees is maximized.
Return the maximum product of the sums of the two subtrees. Since the answer may be too large, return it modulo 109 + 7.
Note that you need to maximize the answer before taking the mod and not after taking it.
Example 1:
Input: root = [1,2,3,4,5,6]
Output: 110
Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)
Example 2:
Input: root = [1,null,2,3,4,null,null,5,6]
Output: 90
Explanation: Remove the red edge and get 2 binary trees with sum 15 and 6.Their product is 90 (15*6)
Constraints:
Node.val
<= 104
class Solution {
public:
long long result, total;
long long dfs(TreeNode* root) {
if (!root) return 0;
if (root->left == root->right) return root->val;
long long l_sum = dfs(root->left);
long long r_sum = dfs(root->right);
result = max(result, (total - l_sum) * l_sum);
result = max(result, (total - r_sum) * r_sum);
return root->val + l_sum + r_sum;
}
int maxProduct(TreeNode* root) {
total = dfs(root);
dfs(root);
return result % 1000000007;
}
};
Yen-Chi ChenSat, Dec 10, 2022
class Solution:
def maxProduct(self, root: Optional[TreeNode]) -> int:
all_sums = []
def get_tree_sum(root):
if not root: return 0
left_sum = get_tree_sum(root.left)
right_sum = get_tree_sum(root.right)
total_sum = root.val + left_sum + right_sum
all_sums.append(total_sum)
return total_sum
best = 0
total = get_tree_sum(root)
for s in all_sums:
best = max(best, (total - s) * s)
return best % (10 ** 9 + 7)
KobeSun, Dec 11, 2022