1514. Path with Maximum Probability
You are given an undirected weighted graph of n
nodes (0-indexed), represented by an edge list where edges[i] = [a, b]
is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i]
.
Given two nodes start
and end
, find the path with the maximum probability of success to go from start
to end
and return its success probability.
If there is no path from start
to end
, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
Output: 0.25000
Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
Example 2:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
Output: 0.30000
Example 3:
Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
Output: 0.00000
Explanation: There is no path between 0 and 2.
Constraints:
n
<= 104start
, end
< n
start
!= end
a
, b
< n
a
!= b
succProb.length
== edges.length
<= 2*104succProb[i]
<= 1
class Solution {
public:
const double INF = numeric_limits<double>::max();
double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
vector<double> distance(n, INF);
vector<int> adj[n];
vector<vector<double>> logProb(n, vector<double>(n, INF));
for (int i = 0; i < edges.size(); i ++) {
int u = edges[i][0];
int v = edges[i][1];
adj[u].push_back(v);
adj[v].push_back(u);
logProb[u][v] = -log2(succProb[i]);
logProb[v][u] = -log2(succProb[i]);
}
auto cmp = [&distance](const int u, const int v) {
return distance[u] < distance[v];
};
priority_queue<int, vector<int>, decltype(cmp)> frontier(cmp);
distance[start] = 0.;
frontier.push(start);
while (not frontier.empty()) {
int u = frontier.top();
frontier.pop();
for (int v : adj[u]) {
if (distance[u] + logProb[u][v] < distance[v]) {
distance[v] = distance[u] + logProb[u][v];
frontier.push(v);
}
}
}
return pow(2, -distance[end]);
}
};
Dijkstra's algorithm, TLE when n=10000
class Solution {
public:
const double INF = numeric_limits<double>::max();
double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
// ios_base::sync_with_stdio(0); cin.tie(0);
vector<vector<pair<int, double>>> adj(n);
for (int i = 0; i < edges.size(); i ++) {
int u = edges[i][0];
int v = edges[i][1];
adj[u].push_back({v, succProb[i]});
adj[v].push_back({u, succProb[i]});
}
vector<double> distance(n, 0.);
distance[start] = 1.;
queue<int> frontier;
frontier.push(start);
while (not frontier.empty()) {
int u = frontier.front();
frontier.pop();
for (const auto [v, prob] : adj[u]) {
if (distance[u] * prob > distance[v]) {
distance[v] = distance[u] * prob;
frontier.push(v);
}
}
}
return distance[end];
}
};
BFS, Beats 93.16%
Jerry28 June, 2023