Try   HackMD

2022q1 Homework5 (quiz8)

contributed by < Kevin-Shih >

測驗 1

題目描述
完整程式碼: memchr_opt.c

當 length 大於等於 LBLOCKSIZE 時

unsigned long *asrc = (unsigned long *) src;
unsigned long mask = d << 8 | d;
mask = mask << 16 | mask;
for (unsigned int i = 32; i < LBLOCKSIZE * 8; i <<= 1)
    mask = (mask << i) | mask;

while (length >= LBLOCKSIZE) {
    /* If this word-sized segments contain the search character,
     * then break the loop and resort to the bytewise loop. 
     */
    if (DETECT_CHAR(*asrc, mask))
        break;
    /* If this word-sized segments does not contain the target character,
     * then `asrc` point to next word-sized segments.
     */
    asrc++;
    length -= LBLOCKSIZE;
}

/* If there are fewer than LBLOCKSIZE characters left, then we resort to
 * the bytewise loop.
 */
src = (unsigned char *) asrc;

asrc 用於指向欲比較的 src 片段,透過轉型為 unsigned long * 使其每次只能存取一段 LBLOCKSIZE 大小的範圍。 mask 則是完全由要偵測的字元 d 所構成的 unsigned long,for loop 主要是為了產生對應 32-bit 與 64-bit 兩種不同系統的 mask

while loop 顯然是為了每次處理 LBLOCKSIZE 大小的關鍵,當該片段中為偵測到目標字元 d 時 (DETECT_CHAR 回傳 0 時),asrc 會重新指向下個 LBLOCKSIZE 大小的片段,由於型態為 unsigned long * 故直接加 1 即可移至下個片段的位址,而 length 則相應的減去 LBLOCKSIZE


測驗 2

題目描述

  • DDD : idx++
    next slot, so let idx = idx + 1
  • KKK : mask + 1
    因前面設定 lfr->mask = ringsz - 1 故推論 size = mask +1
  • TTT : &lfr->ring[tail & mask].idx, __ATOMIC_RELAXED
    因前面的 lfring_enqueuelfr->ring[tail & mask].idx = tail; 的片段,因此推論要檢驗 lfr->ring[tail & mask].idx 與 tail 是否相等。
  • HHH : head + actual
    由 do while loop 中的 Single-consumer 的部份
    ​​​​if (UNLIKELY(lfr->flags & LFRING_FLAG_SC)) { /* Single-consumer */
    ​​​​    __atomic_store_n(&lfr->head, head + actual, __ATOMIC_RELAXED);
    ​​​​    break;
    ​​​​}
    
    可知在跳出迴圈前要將 head + actual 存入 &lfr->head,又依據 __atomic_compare_exchange_n 在將 desire (HHH) 寫入*ptr (&lfr->head) 後會回傳 true ,再加上 NOT 後就會跳出 loop,因此 HHH= head + actual

__atomic_compare_exchange_n (type *ptr, type *expected, type desired, bool weak, int success_memorder, int failure_memorder)
If desired is written into *ptr then true is returned
gcc

修改後的程式碼:

static inline ringidx_t cond_reload(ringidx_t idx, const ringidx_t *loc)
{
    ringidx_t fresh = __atomic_load_n(loc, __ATOMIC_RELAXED);
    if (before(idx, fresh)) { /* fresh is after idx, use this instead */
        idx = fresh;
    } else { /* Continue with next slot */
	   /* XXXXX */ idx++;
    }
    return idx;
}

static inline ringidx_t find_tail(lfring_t *lfr, ringidx_t head, ringidx_t tail)
{
    if (lfr->flags & LFRING_FLAG_SP) /* single-producer enqueue */
        return __atomic_load_n(&lfr->tail, __ATOMIC_ACQUIRE);

    /* Multi-producer enqueue.
     * Scan ring for new elements that have been written but not released.
     */
    ringidx_t mask = lfr->mask;
    ringidx_t size = /* XXXXX */ mask + 1;
    
    /* Since we got `lfr->ring[tail & mask].idx = tail;` in the `lfring_enqueue` 
     * function which enqueue elements at tail, so load 
     * `&lfr->ring[tail & mask].idx` which should equal to tail
     */
    while (before(tail, head + size) &&
           /* XXXXX */ __atomic_load_n(&lfr->ring[tail & mask].idx, __ATOMIC_RELAXED) ==
               tail)
        tail++;
    tail = cond_update(&lfr->tail, tail);
    return tail;
}

uint32_t lfring_dequeue(lfring_t *lfr,
                        void **restrict elems,
                        uint32_t n_elems,
                        uint32_t *index)
{
    ringidx_t mask = lfr->mask;
    intptr_t actual;
    ringidx_t head = __atomic_load_n(&lfr->head, __ATOMIC_RELAXED);
    ringidx_t tail = __atomic_load_n(&lfr->tail, __ATOMIC_ACQUIRE);
    do {
        actual = MIN((intptr_t)(tail - head), (intptr_t) n_elems);
        if (UNLIKELY(actual <= 0)) {
            /* Ring buffer is empty, scan for new but unreleased elements */
            tail = find_tail(lfr, head, tail);
            actual = MIN((intptr_t)(tail - head), (intptr_t) n_elems);
            if (actual <= 0)
                return 0;
        }
        for (uint32_t i = 0; i < (uint32_t) actual; i++)
            elems[i] = lfr->ring[(head + i) & mask].ptr;
        smp_fence(LoadStore);                        // Order loads only
        if (UNLIKELY(lfr->flags & LFRING_FLAG_SC)) { /* Single-consumer */
            __atomic_store_n(&lfr->head, head + actual, __ATOMIC_RELAXED);
            break;
        }

        /* else: lock-free multi-consumer */
    } while (!__atomic_compare_exchange_n(
        &lfr->head, &head, /* Updated on failure */
        /* If &lfr->head == &head, then &lfr->head = head + actual 
         * else &head = &lfr->head.
         */
        /* XXXXX */ head + actual,
        /* weak */ false, __ATOMIC_RELAXED, __ATOMIC_RELAXED));
    *index = (uint32_t) head;
    return (uint32_t) actual;
}

此外,CACHE_LINE 的大小可透過 sysconf(_SC_LEVEL1_DCACHE_LINESIZE) 獲取 L1 dcache line 的大小。

_SC_LEVEL1_DCACHE_LINESIZE
Inquire about the line length of the Level 1 data cache.
On aarch64, the cache line size returned is the minimum data cache line size observable by userspace.
gnu:Constants for sysconf Parameters


測驗 3

題目描述

修改後的 periodic_routine 程式碼:

static void periodic_routine(struct work_struct *ws)
{
    if (likely(ws)) // 當 ws 不為 null
        check();
    queue_delayed_work(wq, &dont_trace_task, JIFFIES_DELAY);
    /* 因 dont_trace_init 只呼叫一次 queue_delayed_work ,因此每次執行 periodic_routine
     * 都呼叫一次 queue_delayed_work 來實現重複檢查是否有 process 在 ptracing
     */

kernel 中對於 task_struct 成員 ptracedptrace_entry 的註釋

/*
 * 'ptraced' is the list of tasks this task is using ptrace() on.
 *
 * This includes both natural children and PTRACE_ATTACH targets.
 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 */
struct list_head		ptraced;
struct list_head		ptrace_entry;

結合 is_tracer() 的設計以及 check() 呼叫時的參數 &task->ptraced

/* @return true if the process has tracees */
static bool is_tracer(struct list_head *children)
{
    struct list_head *list;
    list_for_each (list, children) {
        struct task_struct *task =
            list_entry(list, struct task_struct, ptrace_entry);
        if (task)
            return true;
    }
    return false;
}

可以看出迴圈中的 list 即是某個 task 的 tracee,list_entry(list, struct task_struct, ptrace_entry) 則會回傳該 tracee 對應的 task_struct (由註解可知 tracer 的 ptraced 會出現在 tracee 的 ptrace_entry)。 確認該 tracee 的存在後就可以確定該 task 為 tracer 了。 而在 kill_tracee() 中也使用了相同的方式找出該 tracer 所有 tracee 對應的 task_struct 並終止該 task。