---
tags: PyTorch, Python
---
# PyTorch 辨識 Cifar10
源碼放在:[Colab](https://colab.research.google.com/drive/1izFavABpZBYolcedNDl0jQdOvFDFzgBu#scrollTo=MBJspadfetQj)
### 1. 載入需要的 Module
```python!
import torch
import torch.nn as nn
import torchvision
import matplotlib.pyplot as plt
import torch.utils.data as Data
from torch.autograd import Variable
import os
```
### 2. 設置模型參數
```python!
DOANLOAD_DATASET = True
LR = 0.001
BATCH_SIZE=128
EPOCH = 10
MODELS_PATH = './models'
```
### 3. 數據預先處理的步驟
```python!
train_transform = torchvision.transforms.Compose([
# torchvision.transforms.RandomCrop(32, 4),
# torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
test_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
```
### 4. 載入Cifar10 Dataset
```python!
train_data = torchvision.datasets.CIFAR10(
root='./cifar10',
train=True,
transform=train_transform,
download=DOANLOAD_DATASET
)
test_data = torchvision.datasets.CIFAR10(
root='./cifar10',
train=False,
transform=test_transform,
download=DOANLOAD_DATASET
)
```
### 5. 把要訓練的資料放入Data.DataLoader
```python!
data_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
```
:::info
這樣能在訓練時<font color=#ff0000>**一次讀取1個Batch_size的數據**</font>而不用讀取整個Daset的數據
:::
### 6. Cifar10的類別名稱
```python!
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
```
### 7. 創建模型
```python!
class CNN(nn.Module):
def __init__(self, num_classes: int):
super(CNN, self).__init__()
self.num_classes = num_classes
# in[N, 3, 32, 32] => out[N, 16, 16, 16]
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels=3,
out_channels=16,
kernel_size=5,
stride=1,
padding=2
),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2)
)
# in[N, 16, 16, 16] => out[N, 32, 8, 8]
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2),
nn.ReLU(True),
nn.MaxPool2d(2)
)
# in[N, 32 * 8 * 8] => out[N, 128]
self.fc1 = nn.Sequential(
nn.Linear(32 * 8 * 8, 128),
nn.ReLU(True)
)
# in[N, 128] => out[N, 64]
self.fc2 = nn.Sequential(
nn.Linear(128, 64),
nn.ReLU(True)
)
# in[N, 64] => out[N, 10]
self.out = nn.Linear(64, self.num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # [N, 32 * 8 * 8]
x = self.fc1(x)
x = self.fc2(x)
output = self.out(x)
return output
```
### 8. 使用模型
```python!
cnn = CNN(len(classes))
```
### 9. 使用梯度下降優化器
```python!
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
```
### 10. 損失函數
```python!
loss_function = nn.CrossEntropyLoss()
```
### 11. 開始訓練模型
```python!
for epoch in range(EPOCH):
cnn.train()
for step, (x, y) in enumerate(data_loader):
b_x = Variable(x, requires_grad=False)
b_y = Variable(y, requires_grad=False)
out = cnn(b_x)
loss = loss_function(out, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 100 == 0:
print('Epoch: {} | Step: {} | Loss: {}'.format(epoch + 1, step, loss))
```
### 12. 儲存模型
```python!
if not os.path.exists(MODELS_PATH):
os.mkdir(MODELS_PATH)
torch.save(cnn, os.path.join(MODELS_PATH, 'cnn_model.pt'))
```
### 13. 創建測試集
```python!
test_loader = Data.DataLoader(
dataset=test_data,
batch_size=test_data.data.shape[0],
shuffle=False
)
test_x, test_y = iter(test_loader).next()
```
### 14. 評估整個測試集的準確度
```python!
cnn.eval()
prediction = torch.argmax(cnn(test_x), 1)
acc = torch.eq(prediction, test_y)
print('Accuracy: {:.2%}'.format((torch.sum(acc) / acc.shape[0]).item()))
```