# DENSEPOSE Windows10 Installation ###### tags: `Deep Learning` 1.Install Anaconda 2.conda create -n pose python=3.6.8 3.conda activate pose 4.install pytorch ` conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 -c pytorch ` 5.install caffe2 requiements ` pip install future ^ hypothesis ^ numpy ^ protobuf ^ six ` 6.install some packages ``` pip install pyyaml pip install h5py pip install scipy pip install memory_profiler pip install opencv-python ``` > [name=Chong Ming Wei]要先裝cython > pip install cython 7. install cocoapi cd (WinDensePose-master)/cocoapi/PythonAPI/ python setup.py build python setup.py install 8. install densepose cd (WinDensePose-master)/densepose/ python setup.py build python setup.py install 9. set path enviroment set PYTHONPATH=(WinDensePose-master)\densepose;%PYTHONPATH% **OR** 編輯環境變數>>環境變數>>新增系統變數 ![](https://i.imgur.com/ZlZKZcr.png) 10. Download UV data(**Necessary**) We need to download manually the archive below because under Windows we can not eexecute .sh scripts. Follow [**the link**](https://dl.fbaipublicfiles.com/densepose/densepose_uv_data.tar.gz) and unzip and copy all files in densepose\DensePoseData\UV_data. Another option is to install cygwin and then run the scripts which are in the folder densepose\DensePoseData. Scripts are: get_DensePose_COCO.sh, get_densepose_uv.sh, get_eval_data.sh 11. Test with(weight檔要額外下載下來,直接打下面指令會報錯) python tools/infer_simple.py --cfg configs/DensePose_ResNet101_FPN_s1x-e2e.yaml --output-dir DensePoseData/infer_out/ --image-ext jpg --wts https://dl.fbaipublicfiles.com/densepose/DensePose_ResNet101_FPN_s1x-e2e.pkl DensePoseData/demo_data/demo_im.jpg Reference: 1. * https://medium.com/@nikolaystoychev/how-to-configure-build-and-run-densepose-algorithm-under-windows-913302304409 1. * https://github.com/NikolaySt/WinDensePose/blob/master/INSTALL.md