Foundation
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Problem solving trick: practice test 选择: Q4(AR2 sta): $X_t = 0.5 + 1.2X_{t-1} - 0.4 X_{t-2} + Z_t + 1.1 Z_{t-1}$ AR2的快速判别: a1 +a2<1, a1-a2>-1, a2>-1: 本题1.2-0.4<1, 1.2-(-0.4)>-1, -0.4>-1, 所以平稳 Q8(var of forecast error) 写成$(1-0.5B+0.2B^2)X_t = Z_t - 0.1Z_{t-1}$, 逆转过去,本题求3-step forecast 泰勒展开到2阶就可以。 $u = 0.5B - 0.2B^2, (1 + u + u^2 + ...) (Z_t - 0.1Z_{t-1})$ Q11 AR(2)的快速判别同Q4, Garch的部分,从$\sigma^2$ 写到 $Y^2$, ARMA等价形式. 比如 $\sigma^2_t = 0.5 \sigma^2_{t-1} + 0.25 \sigma^2_{t-2} + 0.125Y_{t-1}^2$ 可以补 martingale difference $\eta_t = Y_t^2 - \sigma^2_t$ 这样 $Y_t^2 = (0.125+0.5)Y_{t-1}^2 + 0.25Y_{t-2}^2 + \eta_t - 0.5\eta_{t-1} - 0.25\eta_{t-2}$ 平稳性判别就是 $0.625+0.25 < 1, 0.625-0.25 > -1, 0.25 > -1$ Problem Set 11-1: 这个AR快速判别本质上是二次方程根norm>1的条件,所以在VAR里能这样用. 比如 P11-1 得到 $0.6B^2 - 1.7B + 1 =0$, 读出系数$a_1, a_2$实际是 1.7, -0.6 立刻知道它不stationary了. Moreover, 对2阶的VAR是不是能通过矩阵$\Phi$立马读出系数呢? $I-B\Phi$ 二阶系数就是-1*($b_{11} b_{22} - b_{12} b_{21}$), 一阶系数是 $b_{11}+b_{22}$ 它和特征根也有联系. $det(I-B\Phi)$, B是对角阵, 等同于乘一个数 $det(I-k\Phi)$, 提出k, 解出的特征根实际是1/k, 所以|k|>1 需要|1/k| <1, 所以也可以看二阶矩阵$\Phi$的特征根是不是小于1. 11-3: 如果用上述的AR快速判定 用到MA上时,注意要先把矩阵反号. $$ \epsilon_t + ( \begin{matrix} 0.6 & 0.4\\ 0.2 & 0.4\\ \end{matrix} )\epsilon_{t-1} $$ 需要变成.., 稳妥起见可以先写出二次方程再读系数. --- 习题的启示: Garch(h, k) h是$\sigma^2$的阶数,k是$Y^2$的阶数, 对GARCH(1,1) 如果没有Y的,就是Garch(1,0), 那不会有kurtosis>3. ARMA的spectrum: $f(\omega) = \frac{\sigma_z^2}{\pi} \frac{|\theta(e^{i\omega})|^2}{|\phi(e^{i\omega})|^2}$ SES 和 ARIMA(0,1,1) 的等价关系, SES 只应用于 stationary series. ---- 再补充两个HAC相关的. $var(\hat \mu)$, 和 encoded 在 spectrum f(0). strict Stationarity: joint distribution is invariant of shift. $X_t, Y_t$ stationary, $X_t + Y_t$ 未必 stationary. $X_t$ stationary, $X_t - X_{t-1}$ 是 stationary. stationary 和 autocorellation 的关系: 有short-term autocorrelation,甚至有的有周期性\seasonality,还是stationary的. AR模型的平稳性(2种等价方法): $\phi(B)X_t = \epsilon_t$, 对应写出Yule-Walker方程 $\rho(k) = \alpha_1 \rho(k-1) + ..$ 这是一组差分方程,需要解出他们的auxiliary equation $y^k - \alpha_1 y^{k-1} - ... = 0$ 解有如此形式: $\rho(k) = A_1 y_1^{k} + A_2 y_2^k+...$, 这些A是参数,可以通过Yule-Walker方程确定,如$\rho(0) = A_1 + ...$ 对于平稳序列,当$k\to\infty$时,$\rho(k) \to 0$, 所以要求 $|y_k| < 1$. 注意这里是小于,下面是大于。 他还有一种等价形式,就是常见的unit root. $\phi(B) = 0$的根都在单位圆外.(modular > 1) MA版本的可逆性条件是 $X_t = \theta(B)\epsilon_t$, $\theta(B) = 0$的根在单位圆外. 对于1阶的快速判别: 系数小于1. 对于2阶AR的快速判别: $X_t = a_1 X_{t-1} + a_2 X_{t-2} + \epsilon_t$ $a_1 + a_2 < 1, a_1 - a_2 > -1, a_2>-1$ 三个条件同时满足. Wold decomposition: any discrete stationary process can be decomposed into pure deterministic and pure indeterministic components, they're uncorrelated. 平稳序列的acv.f. $\hat \gamma_k$ 与 $\gamma_k$ 差距bias of order $1/N$. 随机序列iid的相关系数 $r_k=c_k/c_0 \sim N(-\frac{1}{N}, \frac{1}{N})$, 所以 acf 的bound是$1.96/\sqrt{N}$ 通过看acf降到0的速度,如果太慢多半不平稳。 AR系数的估计: LS or MLE or Yule-Walker Model Selection criteria: AIC: -2 * log-likelihood + 2 * p AICC: -2 * log-likelihood + 2 * p * N / (N - p - 1) BIC: -2 * log-likelihood + log(T) * p + p 越小越好, AIC underpenalize than BIC. Test 合集: 平稳的好处: forecast error variance remains finite. Unit roots: ADF: H0: there is a unit root. Residuals: if a good model, residuals should be white noise, close to 0, Ljung-Box: $..\sum_k r^2_k..$ 服从chi-2, if model is good. Durbin-Watson: 等价于检验 $r_1$, 应该在2附近, if model good. SARIMA: (p,d,q) x (P,D,Q)s HAC:heteroscedasticity and autocorrelation consistent ------------------------------------------------------ 讲义: 平稳性判别,随机取出一段时间来看不能判断是不是不属于. 波动-方差没有越来越大,没有明显的趋势-均值. 但seasonality不一定是不平稳的. 是因为我们只看到了 $\omega \in \Omega$ 的一个实现. P61 开始,参数估计 根据correlogram看出AR or MA or ARMA: ACF: 拖尾 - AR PACF April 8. Forecasting Exponential Smoothing 有3种形式: $\hat X_{t+1} = \alpha X_t + (1 - \alpha) \hat X_t = \hat X_t + \alpha (X_t - \hat X_t)$ 估计 + 修正 model-based: conditional mean. Box-Jenkins 模型参数估计?: Box-Jenkins模型就是ARIMA: 1.difference until stationary - correlogram to zero quickly. 2.model identification(which type, AR or MA) 3.estimation parameters - MLE\LS 4.diagnostic checking - Residual random? ARMA: Forecasting 误差计算另类方法 写为 MA infinite, h步就是前h个. 预测方法: 写成无穷阶AR. April 22 Spectral Analysis $X_t = Rcos(U + t) + \epsilon_t$, U is uniform (0, $2\pi$) is a stationary process! 我们观察到的他的一条trajectory还表现出了seasonality. stationary是指背后的机制,观察只是一次样本. Spectral的理解: *variation* in time series 可以有低频,中频,高频多条curve的variation叠加而成. 还有低低频,中低频, 高高频... 连续的分解就有了 spectral representation. Wiener-Khintchine theorem: $\gamma(k) = \int_{0}^{\pi} cos\omega t dF(\omega)$. $F(0) = 0, F(\pi) = \sigma^2 = \gamma(0)$ auto covariance function and spectral density 的关系 representation theorem $\gamma(k)$ 和 $f(\omega)$ 的转换, Fourier. spectral density examples: 带公式. white noise, MA(1).. estimate $f(\omega)$ given data, 1.infinite auto covariance 2. smoothed periodogram? $I(\omega)$ $E(I(\omega)) \to f(\omega)$ when $N \to \infty$. April 29, spectral analysis ii, P100 variance estimation via periodogram want to estimate var($\hat \mu$) HAC via periodogram, program. non-linear model. TAR model May 4, ARCH\GARCH, deterministic model. GARCH的ACF看着像white noise, 但平方以后就不是。 Jarque-Bera 检测正态,看skew和kurto符不符合. May 13, Impulse response function(IRF),VAR $\frac{dX_{t}}{d\epsilon_{t-r}}$ 或者 $\frac{dX_{t+r}}{d\epsilon_{t}}$ MA的IRF, AR的IRF, ARMA的IRF IRF的intuition? 在t时刻epsilon来了一个shock,怎样在后面衰减. calculate IRF of VAR in matrix form, since there're $\varepsilon_{1,t}, \varepsilon_{2,t}$ 4个IRF: $X_1', Y_1', X_2', Y_2'$ 先逆转成MA$(\infty)$, 就可以直接方便的读出系数了。 $\mathbf{X_t} = \mathbf{\Phi}\mathbf{X_{t-1}} + \varepsilon$ $(\mathbf I-\mathbf{\Phi}B)\mathbf{X_t} = \varepsilon$ 这里B是一个matrix,对角阵. $BX_t = X_{t-1}$ $(I-\Phi B)^{-1} = I + \Phi B + ()^2 + ..$ May 27, structural VAR contemporaneous on the right hand side. add structure on shocks. long-run restrictions 有关SVAR模型: structure 是指符合一些假设(constraint), 比如 ordered shock, 比如 long-run restriction, 比如 t时刻发生的shock $\epsilon_t$ 对经济没有长期影响. 经济学的出发点: 研究shock的影响. 把stationary的模型 转化为MA的表达,得到impulse response function. reduced-form VAR 不依赖于 当期 $y_t$. 可以通过转化将 依赖$y_t$ 的模型转为reduced-form. Link by 逆矩阵. 但这时候 reduced 形式下的 "shock" $u_{t,1}, u_{t,2}$ 就不再independent了,还需要估计他们的cov. ### 问题记录 P128 prediction intervals 预测的区间估计. HAC ### 犯错 $\phi(B), \psi(B)$ 注意一个是加一个是减... # TS的结构 stationarity Trend, Periodicity, Residuals分解 AR, MA, ARMA, ARIMA, SARIMA (Box-Jenkins) stationarity, form, fit and predict Spectral Analysis Volatility model(ARCH, GARCH) Impulse response function structural VAR

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully