R
mtext
bold
bquote
corrplot
colorlegend
par
png
diag
mtext
mar
seq(from=,to=,length.out=)
forestplot
matrix
rownames
colnames
lower.tri
upper.tri
dplyr::arrange
plotrix::ablineclip()
ggplot2::geom_linerange()
ggplot2::scale_x_continuous()
ggplot2::geom_line()
gghighlight::gghighlight()
ggplot2::geom_tile()
ggplot2::scale_fill_continuous()
ggplot2::facet_wrap()
ggpubr::ggarrange(p1,p2,p3,p4)
ggplot2::ylim()
Chang's collection of working R code and plots.
ggplot2::ggplot()+ggplot2::geom_line()+gghighlight::gghighlight()
ggplot2::ggplot()+ggplot2::geom_line()+gghighlight::gghighlight()
ggplot2::ggplot()+ggplot2::geom_tile()+ggplot2::scale_fill_continuous()+ggplot2::facet_wrap()
ggplot2::ggplot(x=,y=factor())+ggplot2::geom_tile()+ggplot2::scale_fill_continuous()+ggplot2::facet_wrap()
calendR::calendR()
ggplot2::ggsave()
as.POSIXct(x=Activity.Date, format =, tz="Australia/Brisbane")
Moving.Time/60/60
ggplot2::ggplot()+ggplot2::geom_bar(position="stack")+ggplot2::scale_x_date()+ggplot2::scale_y_continuous()+ggplot2::scale_fill_manual()+ggnewscale::new_scale_fill()+ ggplot2::geom_rect()+ggplot2::scale_fill_manual()
p1<-ggplot2::ggplot()+ggplot2::geom_line()
p2<-ggplot2::ggplot()+ggplot2::geom_line()
p3<-ggplot2::ggplot()+ggplot2::geom_line()
p4<-ggplot2::ggplot()+ggplot2::geom_line()
p<-ggpubr::ggarrange(p1,p2,p3,p4)
ggpubr::annotate_figure(p)
p1<-ggplot2::ggplot() + ggplot2::geom_line() + gghighlight::gghighlight + ggplot2::ylim()
p2<-ggplot2::ggplot() + ggplot2::geom_line() + gghighlight::gghighlight + ggplot2::ylim()
p3<-ggplot2::ggplot() + ggplot2::geom_line() + gghighlight::gghighlight + ggplot2::ylim()
p4<-ggplot2::ggplot() + ggplot2::geom_line() + gghighlight::gghighlight + ggplot2::ylim()
p<-ggpubr::ggarrange(p1,p2,p3,p4)
ggpubr::annotate_figure(p)
p1<-ggplot2::ggplot() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::scale_fill_manual + ggplot2::coord_cartesian()
p2<-ggplot2::ggplot() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::scale_fill_manual + ggplot2::coord_cartesian()
p3<-ggplot2::ggplot() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::scale_fill_manual + ggplot2::coord_cartesian()
p4<-ggplot2::ggplot() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::geom_area() + ggplot2::scale_fill_manual + ggplot2::coord_cartesian()
p<-ggpubr::ggarrange(p1,p2,p3,p4)
ggpubr::annotate_figure(p)
strftime(x=unique(c(plot.data$PendingSince.date, plot.data$today)) ,format = "%d%b\n%y")
pals::glasbey(n=20)
ggplot2::ggplot()+ggplot2::geom_linerange()+ggplot2::scale_x_continuous()
pals::polychrome(n=20)
ggplot2::ggplot()+ggplot2::geom_linerange()+ggplot2::scale_x_continuous()
Raw image
Annotated image
Plot relative proportions of categories and their sub-categories with a treemap. The categories and sub-categories are alledged conduct types and subtypes from CCC Allegations Data
This plot displays the distribution of ages in females (F) and males (M) with means (dashed lines). The means are slso shown in a table within the plot
This plot displays bars in user-defined color (green, blue) for statistically significant result and pale color (pale green, pale blue) for statistically non-sigificant result.
The two dimensions are taken from the same group. The diagonal, correlations between variables and themselves, are skipped here. Coefficient data are genetic correlation coefficients calculated using Linux software package Linkage disequilibrium score regression. The input data are three full matrices that are populated from a data frame: rG coefficients, p values and quotients of p values divided by significance threstholds
Create a heatmap to display proportions of variance (R-squared, R2) of group 1 variables explained by group 2 variables. The row dimension represents 40 variables from group 2. The column dimension represents 30 variables from group 1. Higher the R2, larger and more purplish the dots are
Create a table and forest plot to display odds ratios of binary outcome variables estimated from two different types of analyses[5].
Visualise the number of participants between three phases of a study (NU1,NU2,NU3). The numbers of overlapped participants are in red and the numbers of total participants are in black.
Compare 2 variables (CTT-based scores in orange, IRT-based scores in light blue) between twin 1 and twin 2 in monozygotic twins (MZ) and dyzygotic twins (DZ)
A Manhattan plot is a specific type of scatter plot widely used in Genome Wide Association Study (GWAS). Each point represents a genetic variant. The X axis shows its position on a chromosome, the Y axis shows how much it is associated with a trait as –log10(p-value) Manhattan plot in R: a review.
Compare the distribution of three scores (PSYCH6, SOMA6, and SPHERE12) computed with classical test theory (orange group; panel A, B, C) and item response theory (IRT, blue groups; panel D, E, F)
A box plot[10] presents information from a five-number summary. It does not show a distribution in as much detail as a stem and leaf plot or histogram does, but is especially useful for indicating whether a distribution is skewed and whether there are potential unusual observations (outliers) in the data set. Box and whisker plots are also very useful when large numbers of observations are involved and when two or more data sets are being compared.
line plots[11] .
R script file path:
D:\googleDrive\Job\Queensland-Crime-Corruption-Commissioin_QLD-332553_data-scientist\Assessment1_create-dashboard\make-treemap_alledged-conduct-types_alledged-conduct-subtypes.R
plot file path:
D:\googleDrive\Job\Queensland-Crime-Corruption-Commissioin_QLD-332553_data-scientist\Assessment1_create-dashboard\make-treemap_alledged-conduct-types_alledged-conduct-subtypes.png ↩︎
R script file path:
/mnt/backedup/home/lunC/scripts/PRS_UKB_201711/PRS_UKB_201711_step18-04-06_barPlot_percen-variance-selective-phenotypes_explained-by-GSCAN-PRSs.R
plot file path:
/mnt/backedup/home/lunC/plots/zfig44-04_percent-variance-of-cocaine-amphetamine-hallucinogens-ecstasy-cannabis-AUD_explained-by-PRS-GSCAN-SI-DPW.png ↩︎
R script file path:
/mnt/backedup/home/lunC/scripts/MR_ICC_GSCAN_201806/MR_step08-04_heatmap_LDSC-genetic-correlations.R
plot file path:
/mnt/backedup/home/lunC/plots/MR_ICC_GSCAN_201806/genetic-correlation-between-use-4-substances.png ↩︎
R script file path:
/mnt/backedup/home/lunC/scripts/PRS_UKB_201711/PRS_UKB_201711_step18-04_heatmap_variance-explained-by-PRS_r-square_p-value.R
plot file path:
/mnt/backedup/home/lunC/plots/licit_substance_PRSs_predict_illicit_drug_use/zfig39_heatmap_corrplot_R2-alcoho-toba-drugs-diagSU-explained-by-GSCAN-PRS.pdf ↩︎
R script file path:
/mnt/backedup/home/lunC/scripts/MR_ICC_GSCAN_201806/MR_step10-03_forest-plot_odds-ratio-95percent-CI_observational-associations_MR-IVW.R
plot file path:
/mnt/backedup/home/lunC/plots/MR_ICC_GSCAN_201806/manu4_odds-ratio-95CI_observational-association_MR-IVW.png ↩︎
R script file path:
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_programs_R\NU_014_vennDiagram_ID_with_at_least_1_SPHERE_item.R
plot file path:
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_output\fig06_vennDiagram_ID_with_at_least_1_SPHERE_item.png ↩︎
R script file path:
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_programs_R\NU_002c_scatterPlot_twinCorr_2Var.R
plot file path:
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_output\fig10c_scatterPlot_twinCorr_2Var.png ↩︎
R script file path:
D:\Now\library_genetics_epidemiology\GWAS\scripts\PRS_UKB_201711\PRS_UKB_201711_step19-02_manhattan-plot_QCed-SNP_clumped-SNPs.R
plot file path:
D:\Now\library_genetics_epidemiology\GWAS\plots\zfig43-01-01_manhattan-plot_GSCAN-smoking-initiation_LD-clumped-SNPs_suggestive-line-at-p-smaller-than_5e-08.png ↩︎
R script file path:
D:/Now/library_genetics_epidemiology/slave_NU/NU_analytical_programs_R/NU_007a_histogram_rawScore_IRT_byVar.R
plot file path:
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_output_fig12ab_histogram_sumScore_IRTScore_wide.png ↩︎
R script file path
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_programs_R\NU_003_boxplot_SPHERE12.R
plot file path
D:\Now\library_genetics_epidemiology\slave_NU\NU_analytical_output\fig11_boxPlot_SPHERE12_raw_IRT_twins.png ↩︎
R script file path
D:\z_old_files\national_inpatient_sample\NIS_analytical_programs\NIS_10_lineplot_number_discharge_weighted.R
plot file path
D:\z_old_files\national_inpatient_sample\NIS_analytical_output\fig03_weighted_number_discharges_b.png ↩︎