Quick code to run some correlations on a sample table ```{R} library(tidyverse) library(readxl) df<-read_xlsx("table.xlsx") df2<-df %>% mutate(Sample=paste0(reactor,"_",day), S=make.names(S)) %>% select(S,Sample,cov) %>% pivot_wider(id_cols = Sample, names_from = S, values_from = cov) %>% column_to_rownames("Sample") ``` The code below perform the spearman correlations and generate a single dataframe with all the information: P values, adjusted P values and r values. ```{R} dr<-Hmisc::rcorr(as.matrix(df2),type = "spearman" ) rowCol <- expand.grid(rownames(dr$P), colnames(dr$P)) labs <- rowCol[as.vector(upper.tri(dr$P,diag=F)),] P <- cbind(labs, dr$P[upper.tri(dr$P,diag=F)]) dr$padj<-p.adjust(P$P,method = "BH") P<- cbind(P, dr$padj) colnames(P) <- c("Row","Col","P","r","padj") ``` and plotting ```{R} ggplot(P %>% filter(P<0.05), aes(x=Row,y=Col,col=r,size=-log10(padj)))+ geom_point()+ theme_bw()+ theme(axis.text.x = element_text(angle = 90))+ scale_colour_viridis_c(option = "C") ``` ![](https://hackmd.io/_uploads/H1TMGcYo2.png)