Quick code to run some correlations on a sample table
```{R}
library(tidyverse)
library(readxl)
df<-read_xlsx("table.xlsx")
df2<-df %>%
mutate(Sample=paste0(reactor,"_",day),
S=make.names(S)) %>%
select(S,Sample,cov) %>%
pivot_wider(id_cols = Sample,
names_from = S,
values_from = cov) %>%
column_to_rownames("Sample")
```
The code below perform the spearman correlations and generate a single dataframe with all the information: P values, adjusted P values and r values.
```{R}
dr<-Hmisc::rcorr(as.matrix(df2),type = "spearman" )
rowCol <- expand.grid(rownames(dr$P), colnames(dr$P))
labs <- rowCol[as.vector(upper.tri(dr$P,diag=F)),]
P <- cbind(labs, dr$P[upper.tri(dr$P,diag=F)])
dr$padj<-p.adjust(P$P,method = "BH")
P<- cbind(P, dr$padj)
colnames(P) <- c("Row","Col","P","r","padj")
```
and plotting
```{R}
ggplot(P %>% filter(P<0.05), aes(x=Row,y=Col,col=r,size=-log10(padj)))+
geom_point()+
theme_bw()+
theme(axis.text.x = element_text(angle = 90))+
scale_colour_viridis_c(option = "C")
```
