# Processing binny and CoAssembly results
The previous tutorial [here]() ended with the generation of bins and co Assembly but what now?
Now we can look at how the bins are distributed at each time point.
For that we use `R` with the multitool library `tidyverse`
```R
library(tidyverse)
```
## Loading the files
We will be loading the individual library mapping to the coassembly first:
```R
covlist<-list.files("Covstats_FS2C_B1/", full.names = T)
cov<-list()
for (i in 1:length(covlist)){
cov[[i]]<-read_tsv(covlist[i]) %>%
rename(ID=`#ID`) %>%
separate(ID, into = "ID", sep=" ",extra = "drop") %>%
mutate(Lib=paste0("D", i-1))
}
cov<-reduce(cov, rbind)
```
Then the contig distribution summary generated by binny
```R
bin<-read_tsv("contig_data.tsv")%>%
separate(bin, into=c("binID1","binID2"),sep="\\.") %>%
type_convert
```
Then the GTDB-Tk summary results
```R
tax<-read_tsv("gtdbtk/gtdbtk.bac120.summary.tsv") %>%
separate(classification, into=c("K","P","C","O","F","G","S"), sep=";") %>%
mutate(user_genome=gsub("binny_", "", user_genome)) %>%
separate(user_genome, into=c("binID1","binID2","C","P"), extra="drop") %>%
mutate(binID2=as.numeric(binID2),
binID1=gsub("R0","R",binID1),
binID1=gsub("I0","I",binID1))
```
## Plotting
What a metagenome looks like
```R
cov %>%
rename(contig=ID) %>%
left_join(bin) %>%
left_join(tax) %>%
ggplot(aes(y=Avg_fold,x=Ref_GC,col=O))+
geom_point()+
facet_wrap(~Lib)+
scale_y_log10()
```

How bin distribution varies accross libraries (here they don't varie much)
```R
cov %>%
rename(contig=ID) %>%
select(contig,Lib,Avg_fold) %>%
spread(Lib,Avg_fold) %>%
left_join(bin) %>%
left_join(tax) %>%
ggplot(aes(x=D0,y=D1,col=O))+
geom_point()+
scale_y_log10()+
scale_x_log10()
```

Then the average bin coverage (average fold) mapping within each library
```R
cov %>%
rename(contig=ID) %>%
left_join(bin) %>%
left_join(tax) %>%
ggplot(aes(x=paste(binID1,binID2),y=Avg_fold,col=O))+
geom_boxplot()+
scale_y_log10()+
facet_wrap(~Lib)
```

And the average coverage for each bin accross time
```R
cov %>%
rename(contig=ID) %>%
left_join(bin) %>%
left_join(tax) %>%
group_by(Lib) %>%
mutate(prop_cov=prop.table(Avg_fold)*100) %>%
ggplot(aes(x=Lib,y=prop_cov,col=O))+
geom_boxplot()+
facet_wrap(~S, scales = "free")
```

###### tags: `tutorials`,`R`, `Metagenomics`,`Binning`