徐敬能
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    1
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # DSA midterm 標準答案與評分標準 ## 1 改題: 張永達 ### 標準答案 ###### pseudo code ```txt def sort(arr): ptrFront = 1 ptrEnd = n while ptrFront < ptrEnd: if arr[ptrFront] is even and arr[ptrEnd] is odd: swap(arr[ptrFront], arr[ptrEnd]) if arr[ptrFront] is odd: ptrFront++ if arr[ptrEnd] is even: ptrEnd-- return (arr[ptrFront] is odd)? ptrFront : ptrFront-1 ``` ### 評分標準 -0 point: correct -1 point: minor mistake -2 points: wrong/do not mention return index -3 points: some mistake in algorithm -6 points: not in-place algorithm -6 points: not O(n) algorithm -8 points: wrong algorithm -10 points: empty or incorrect ## 2 ### 標準答案 ``` def find(): l, r = 1, n + 1 if arr[1] is even: return 0 while r - l > 1: m = (l + r)/ 2: if arr[m] is odd: l = m if arr[m] is even: r = m return l or def find(): l, r = 1, n if arr[1] is even: return 0 while r - l > 0: m = (l + r)/ 2: if arr[m] is odd: l = m if arr[m] is even: r = m - 1 return l ``` ### 評分標準 - -10: Blank / unrecognizable / wrong solution - -4: Algorithm mistakes - -2: Minor mistakes(all even or all odd ?) - -0: Correct ## 3 改題:陳以潼 ### 標準答案 ### 評分標準 - -10: Blank / unrecognizable / wrong solution - -9: Incomplete solution / unclear notations - -8: Incorrect time / space complexity - -6: Algorithm-breaking mistakes - -3: Incorrect loop condition / unhandled edge case - -2: Minor mistakes - -0: Correct ## 4 改題:陳以潼 ### 標準答案 ### 評分標準 - -15: Blank / unrecognizable / wrong solution - -13: Incomplete solution / unclear notations - -10: Incorrect time / space complexity - -5: Uses doubly-linked list - -4: Algorithm-breaking mistakes - -3: Missing / incorrect important algorithmic component details in pseudo code (e.g. reversing linked list, list comparison) - -2: Missing / incorrect minor algorithmic detail in pseudo code (e.g. link list traversal) - -2: Minor mistakes - -0: Correct ## 5 改題:謝文傑 ### 標準答案 ``` stack tmp while !stk.empty(): if stk.peep() != val: tmp.push(stk.peep()) stk.pop() while !tmp.empty(): stk.push(tmp.peep()) tmp.pop() ``` ### 評分標準 - (-10) Blank / unrecognizable / wrong solution - (-7) Working algorithm with wrong time / space complexity - (-5) Diretly or implicitly assuming can peep any position in the stack - (-2) Minor mistakes ## 6 改提:黃定鈞 ### 標準答案 - Writing a pseudo or explaining in words are both acceptable. - Use the deque data structure for the extension. To implement the $advance(k)$ operation, first pop out the first $k-2$ elements and push them into back. Then, pop out and switch the first two elements from front, which are the $k$th and $k - 1$th elements. Lastly, pop the $k - 2$ elements from back and push them back to front. - Using doubly linked list is also acceptable. But one must explain how he use dll to implement the four pop and push operations of a deque if the answer is to directly swap the $k$th and $k-1$th nodes. ### 評分標準 - -15:Empty, or totally wrong. - -12:You illustrated your idea, but it's not correct / didn't meet the required complexity of actions / lack enough explanations. - -6:The $advance$ action didn't meet $O(1)$ extra-space complexity with correctness - -6:The $advance$ action didn't meet $Ok(k)$ time complexity with correctness - -2:Minor mistakes. Or you illustrate unclearly ## 7 改題:王風意 ### 標準答案 shortest: any valid bst of height 4 tallest: any valid bst of height 12 ### 評分標準 valid bst: 3 points optimal height: 2 points ## 8 改題:涂宇杰 ### 標準答案 $2^{h-d+1}$ ### 評分標準 - (+0) Blank, unrelated solution, or an answer without explanation - (+2) Correct definition of post-order traversal - (+3) State that the maximum traversal distance happens when the node is its parent's left child - (+4) Explain why the answer is equal to the maximum possible size of the (right-)subtree, which is a full (perfect) binary tree of height $h-d$ , plus $1$ - (+6) Correct calculation process and answer - (-1) Few minor errors - (-2) Some errors ## 9 改題:徐敬能 ### 標準答案(兩種擇一) 1. 直接將前三層的element拿出來排序並找出第三大 2. 找出第二大的element,並回傳他的兩個children和他的sibling三個element中的最大值 ### 評分標準 - (-2) Vague notation/minor error, 例如用到一些我看不懂的變數或是pseudo code有小小錯誤 - (-5) Partially correct, 通常是沒考慮到以下其中一種case: 1. 第三大在第二層 2.第三大在第三層 - (-10) No submission/Not correct ## 10 改題:徐敬能 ### 標準答案(兩種擇一) 1. 假設每個element都是unique,用反證法:如果最小的element不是leaf,那這個element一定至少有一個child,但根據max-heap的定義,他的child必會比他小,違反了我們的假設,所以最小的element必是leaf 2. 假設element會重複,舉出最小element不在leaf的反例(例如所有element都一樣的heap) ### 評分標準 - (-5) Incomplete proof, 答案是對的但證明不完整 - (-10) Incorrect proof, 答案是對的但證明不正確,例如自己構建一個heap去證明最小的element必是leaf - (-15) No submission/Not correct ## 11 改題:黃國銘 ### 標準答案 $m=2\ to\ k-1:0$ $m=k: 1$ $m=k+1: 2$ $m=k+2\ to\ n:0$ $1+2=3$ ### 評分標準 - 10 points: correct answer - 5 points: wrong for one of $m=k$ or $m=k+1$ and get the other parts correct - 5 points: calculated the execution count of line 5 for the worst / best case instead of the provided case - 0 points: empty or wrong answer - extra 2 points are subtracted if there are minor mistakes ## 12 改題:周玉鑫 ### 標準答案 | Print | Function Call | | -------- | -------- | | 3 | MERGE_SORT([3]) | | 1 | MERGE_SORT([1]) | | 1 3 | MERGE_SORT([3 1]) | | 4 | MERGE_SORT([4]) | | 1 3 4 | MERGE_SORT([3 1 4]) | | 2 | MERGE_SORT([2])) | | 6 | MERGE_SORT([6]) | | 2 6 | MERGE_SORT([2 6]) | | 5 | MERGE_SORT([5]) | | 2 5 6 | MERGE_SORT([2 6 5]) | | 1 2 3 4 5 6 | MERGE_SORT([3 1 4 2 6 5]) | ### 評分標準 * Only Print or Function call is provided: -8 * Wrong Print: -8 * Wrong Function Call: -8 * Wrong partition point (e.g. floor(n/2)): -6 * 1 Wrong pair: -4 * 2 Wrong pairs: -8 * 3 Wrong pairs: -12 * Show without similar table but reasonable: -4 * No solution is provided / wrong result: -15 ## 13 改題:熊育霆 ### 標準答案 True. #### Solution 1 $\lg\lg k^n = \lg(n\lg k) = \lg n + \lg \lg k = O(\lg n)$ Need to explain why one can ignore the term $\lg\lg k$. 1. It's a constant. 2. Use limit. ### 評分標準 (10 points) * 符號小錯誤不扣分 * (+3) Write down $\lg\lg k^n = \lg(n\lg k) = \lg n + \lg \lg k$, 少寫一個 $\lg$ 給分 * (+7) explain why $O(\lg n)$ * Specify or show the existence of the pair $(c, n_0)$ * Use limit * Point out that $\lg \lg k = O(1)$ or is a constant * 邏輯錯到很難修正沒分數,例如先假設 $f(n) = O(g(n))$ 來證明 $f(n) = O(g(n))$ TBD ## 14 改題:熊育霆 ### 標準答案 False. #### Solution (熊育霆) First we fix some $k > 1$, then we have $\lim_{n \to \infty}\frac{(\lg n)^k}{\lg n} = \lim_{n \to \infty}(\lg n)^{k-1} = \infty$. Directly from the definition of limits, for each fixed $c > 0$, there is a big number $N$ such that $(\lg n)^{k-1} > c$ for all $n > N$. Multiply both side by $\lg n$ and we have $(\lg n)^{k} > c\lg n$ for all $n > N$. Notice that $\lg n > 0$ for all $n > 1$, so the direction of the inequality remains the same. Therefore, such pair $(c, n_0)$ sufficing the Big-O condition **does not exist**. (In fact, $(\lg n)^k = \omega(\lg n)$ if $k > 1$) ### 評分標準 (15 points) * 有給定 $k$ 並且提到 $\lim_{n \to \infty}\frac{(\lg n)^k}{\lg n} = \lim_{n \to \infty}(\lg n)^{k-1} = \infty$ 或是發散 DNE 並且提到這個會得到我們想要的結果就全給 * 用定義反證,邏輯正確也全給 * 小錯扣 5 分,像是範圍包到 $k=1$ 或是沒有給定正確的 $k$ * 沒頭沒尾視嚴重程度扣分 ## 15 改題:洪郁凱 ### 標準答案 Yes $|f(n)-g(n)|=O(1) \to \exists \ constant\ c,n_0,\ g(n)-c \le f(n) \le g(n)+c , \forall n>n_0$ Optional:mentioned exponential function is monotonic increasing function $x > y \to 2^x > 2^y$ $2^{f(n)} \le 2^{g(n)+c}$ $2^{g(n)+c} = 2^c * 2^{g(n)}$ $\exists c'=2^c,n'_0=n_0, 2^{f(n)} \le 2^{g(n)+c} = c' 2^{g(n)}$ 故可得$2^{f(n)}=O(2^{g(n)})$ ### 評分標準 證明或證偽方向正確 +3 從第一個等式找出f(n),g(n)的關係 +6 利用正確Big-O定義定義證明題目所求 +6 寫錯Big-O定義 -2 - 用limit來解釋Big-O - 在課堂上雖然有提到此方式 但是version 0(to be modified)的版本,當然也會在證明過程中出事 - 這樣只會拿到證明/偽方向的3分再扣2分 - 缺少所需$c,n_0$等常數來證明所求 - 所求成立的所需條件寫錯($\exists c$寫成$\forall c$之類) 分成多個case後,只證明完其中一個 -2.5 - 若只分兩個case(f>=g, f<=g)用WLOG可避免 小錯誤 -1 - 直接說$n_0>0$或某個給定整數,然而$n_0$可能會依照不同f(n) g(n)有所變化 - 缺少或給錯題目所求等式所需$c,n_0$ 或是沒有用 $\forall n > n_0$ - 由$|f(n)-g(n)| = O(1)$直接推到$f(n) = O(g(n))$ - 假定f>g,f<g之類 然而這題中f g並不一定會有大小關係(sin,cos),用f(n)<=g(n)+c最安全 - $f(n) = g(n) + c - 1$ 用不等式$f(n)\le g(n) + c$更general - 奇怪的寫法 例如:$2^{O(1)}$ - 證明錯方向(?) 但手法都很正確 ### 其他參考答案 (?) The property $|f(n) - g(n)| = O(1)$ means that there is $c$ and $n_0$ such that $|f(n) - g(n)| < c$ for $n > n_0$. Furturemore, by the triangular inequality, $f(n) - g(n) \leq |f(n) - g(n)| < c$ for $n > n_0$. Since the function $2^{(\cdot)}$ is monotonically increasing, after applying the function to the above inequality, we have $2^{f(n)-g(n)} < 2^c$. Multiply both side by $2^{g(n)}$, we have $2^{f(n)} < 2^c \cdot 2^{g(n)}$ for all $n > n_0$, which is our desired result. ## 16 ### 標準答案 False. Take $f(n)=2n , g(n)=n,$ We have $|\lg f(n)-\lg g(n)|=|\lg (2n)-\lg(n)|= \lg 2,$ which is $O(1)$ Then we need to prove $2^{f(n)}\neq \ O(2^{g(n)})$.~~It's easy to check that it is true.~~ For any $c_0>0$, note that $2^n > c_0$ forall $n>c_0$ $\Rightarrow 2^n \cdot 2^n > c_0 \cdot 2^n$ forall $n>c_0$ $\Rightarrow 2^{2n} > c_0 \cdot 2^n$ forall $n>c_0$ That means there does not exist $c$ satisfy for all $n>n_0,$ $2^{2n}<c \cdot 2^n$, which means $2^{f(n)}\neq \ O(2^{g(n)})$. ### 評分標準 Correct counterexample : +7 (based on your correct counterexample $f(n),g(n)$) state $|\lg(f(n))-\lg(g(n))|=O(1)$ : +1 state $2^{f(n)}\neq \ O(2^{g(n)})$ : +1 explain $|\lg(f(n))-\lg(g(n))|=O(1)$ : +3 explain $2^{f(n)}\neq \ O(2^{g(n)})$ : +3 常見錯誤: $f(n)=O(g(n)) \Rightarrow \lim_{n \rightarrow \infty}(\frac{f(n)}{g(n)})=c$ : -4 $f(n)=O(g(n)) \Rightarrow \frac{f(n)}{g(n)}=c$ : -4 Some $f(n),g(n)$ satisfy the condition $| \lg (f(n)) - \lg (g(n))| =O(1)$(or conditions you transform to) satisfy $2^{f(n)} = O(2^{g(n)})$, you need to give a specific counterexample or give some constraint on $f(n),g(n)$, like $g(n)$ is not $O(1)$ function. : -4

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully