# 三角函數(Trigonometric functions)   ## 定義 假設三角形的對邊(Opposite)為 $a$、鄰邊(Adjacent)為 $b$、斜邊(Hypotenuse)為 $c$,則: * 正弦(Sine):$\sin{\theta} = \frac{a}{c}$ * 餘弦(Cosine):$\cos{\theta} = \frac{b}{c}$ * 正切(Tangent):$\tan{\theta} = \frac{a}{b}$ * 餘切(Cotangent):$\cot{\theta} = \frac{b}{a}$ * 正割(Secant):$\sec{\theta} = \frac{c}{b}$ * 餘割(Cosecant):$\csc{\theta} = \frac{c}{a}$ | | $0^\circ$ | $15^\circ$ | $30^\circ$ | $45^\circ$ | $60^\circ$ | $75^\circ$ | $90^\circ$ | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | $\sin$ | $0$ | $\frac{\sqrt{6} - \sqrt{2}}{4}$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{6} + \sqrt{2}}{4}$ | $1$ | | $\cos$ | $1$ | $\frac{\sqrt{6} + \sqrt{2}}{4}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | $\frac{\sqrt{6} - \sqrt{2}}{4}$ | $0$ | | $\tan$ | $0$ | $2 - \sqrt{3}$ | $\frac{\sqrt{3}}{3}$ | $1$ | $\sqrt{3}$ | $2 + \sqrt{3}$ | $\text{Null}$ | ## 三角函數應用 1. 如果已知斜邊長度,假設為 $c$,且知道斜邊與鄰邊夾角度數為 $\theta$ 度,則鄰邊長度為 $\cos{\theta} \cdot c$、對邊長度為 $\sin{\theta} \cdot c$。 2. 如果已知鄰邊長度為 $b$,且知道斜邊與鄰邊夾角度數為 $\theta$ 度,則對邊長度為 $\tan{\theta} \cdot b$、斜邊長度為 $\sec{\theta} \cdot b$。 3. 如果已知對邊長度為 $a$,且知道斜邊與鄰邊夾角度數為 $\theta$ 度,則鄰邊長度為 $\cot{\theta} \cdot a$、斜邊長度為 $\csc{\theta} \cdot a$。 ## 畢氏恆等式(Pythagorean identity) * $\sin^2{\theta} + \cos^2{\theta} = 1$ * $1 + \tan^2{\theta} = \sec^2{\theta}$ * $1 + \cot^2{\theta} = \csc^2{\theta}$ > $\sin^2{\theta}$ means $(\sin{\theta})^2$;推導可以從畢氏定理過去推。 ## 三角函數和角公式(Angle sum identities) * $\sin(\alpha + \beta) = \sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}$ * $\cos(\alpha + \beta) = \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}$ * $\tan(\alpha + \beta) = \frac{\tan{\alpha} + \tan{\beta}}{1 - \tan{\alpha}\tan{\beta}}$ ## 三角函數差角公式(Angle difference identities) * $\sin(\alpha - \beta) = \sin{\alpha}\cos{\beta} - \cos{\alpha}\sin{\beta}$ * $\cos(\alpha - \beta) = \cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}$ * $\tan(\alpha - \beta) = \frac{\tan{\alpha} - \tan{\beta}}{1 + \tan{\alpha}\tan{\beta}}$ ## 二倍角公式(Double-angle formulae) * $\sin(2\theta) = 2\sin{\theta}\cos{\theta} = \frac{2\tan{\theta}}{1 + \tan^2{\theta}}$ * $\cos(2\theta) = \cos^2{\theta} - sin^2{\theta} = 2\cos^2{\theta} - 1 = 1 - 2\sin^2{\theta} = \frac{1 - \tan^2{\theta}}{1 + \tan^2{\theta}}$ * $\tan(2\theta) = \frac{2\tan{\theta}}{1 - \tan^2{\theta}}$ * $\cot(2\theta) = \frac{\cot^2{\theta} - 1}{2\cot{\theta}}$ * $\sec(2\theta) = \frac{\sec^2{\theta}}{2 - \sec^2{\theta}}$ * $\csc(2\theta) = \frac{\sec{\theta}\csc{\theta}}{2}$ ## 三角函數微分 * $(\sin{x})' = \displaystyle\lim_{h\to0}\frac{\sin{(x+h)-\sin{x}}}{h} \\ = \displaystyle\lim_{h\to0}\frac{\sin{x}\cos{h}+\cos{x}\sin{h}-\sin{x}}{h} \\ = \displaystyle\lim_{h\to0}\frac{\sin{x}(\cos{h}-1)+\cos{x}\sin{h}}{h} \\ = \displaystyle\lim_{h\to0}\sin{x}\frac{\cos{h}-1}{h} + \cos{x}\frac{\sin{h}}{h} \\ = \sin{x} \cdot 0 + \cos{x} \cdot 1 \\ = \cos x$ ###### tags: `Math`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up