鄧鄧人豪
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- type: slide tags: Sprout2023-Presentation title: Python Numpy / Matplotlib - 資訊之芽 2023 python 語法班 --- # Python Numpy / Matplotlib 資訊之芽 Python 語法班 2023/06/04 鄧人豪 --- ## 課程大綱 Outline ---- 1. Numpy - 建立矩陣的方法 - ndarray 基本性質與操作 - Matrix Maths 2. Matplotlib - 折線圖 Line Chart - 其他圖 ---- ## [教材連結](https://colab.research.google.com/drive/1pLagwtFbeMuHuALfNU9tAcEx-0X3s7es?usp=sharing)請點這 --- ## Numpy ---- ### Numpy 可以幹嘛? - 高維度矩陣運算 - 高速計算 ---- ### 安裝 numpy ``` pip install numpy --user python3 -m pip install numpy --user ``` ### import numpy ```python= import numpy as np print(np.__version__) ``` ---- ### 基本矩陣 大小為 3 * 4,每格裡面是:值(Row, Col) | 1(0, 0) | 2(0, 1) | 3(0, 2) | 4(0, 3) | | ------- | -------- | -------- | -------- | | 5(1, 0) | 6(1, 1) | 7(1, 2) | 8(1, 3) | | 9(2, 0) | 10(2, 1) | 11(2, 2) | 12(2, 3) | - Row: 行(橫的), Column: 列(直的) - Row0: 1, 2, 3, 4 - Row1: 5, 6, 7, 8 - Col0: 1, 5, 9 - Col1: 2, 6, 10 --- ## 建立矩陣的方法 ---- ### 建立基本矩陣 用 list, tuple 或任何 array-like object 都可建立矩陣 ```python= import numpy as np arr_list = np.array([1, 2, 3, 4, 5]) # 由 list 建立 arr_tuple = np.array((1, 2, 3, 4, 5)) # 由 tuple 建立 arr_range = np.array(range(1, 6)) # 由 range 建立 print(arr_list) # [1 2 3 4 5] print(arr_tuple) # [1 2 3 4 5] print(arr_range) # [1 2 3 4 5] print(type(arr_list), type(arr_tuple), type(arr_range)) # <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> ``` ---- ### 建立特殊矩陣 - 1 ```python= # np.zeros(shape): 建立 elements 都為 0 的矩陣 arr_0 = np.zeros((3, 4)) # shape = (3, 4) print(arr_0) # [[0. 0. 0. 0.] # [0. 0. 0. 0.] # [0. 0. 0. 0.]] ``` ---- ### 建立特殊矩陣 - 2 ```python= # np.ones(shape): 建立 elements 都為 1 的矩陣 arr_1 = np.ones((3, 4)) # shape = (3, 4) print(arr_1) # [[1. 1. 1. 1.] # [1. 1. 1. 1.] # [1. 1. 1. 1.]] ``` ---- ### 建立特殊矩陣 - 3 ```python= # np.full(shape, value): 建立 elements 都為 value 的矩陣are value arr_full = np.full((3, 4), 5) # shape = (3, 4), value = 5 print(arr_full) # [[5 5 5 5] # [5 5 5 5] # [5 5 5 5]] ``` ---- ### 建立特殊矩陣 - 4 ```python= # np.eye(n): 建立 n x n 的單位矩陣(identity matrix) arr_eye = np.eye(3) print(arr_eye) # [[1. 0. 0.] # [0. 1. 0.] # [0. 0. 1.]] ``` ---- ### 建立特殊矩陣 - 5 ```python= # np.random.random(shape): 建立 elements 都為在 [0, 1) 範圍內隨機值的矩陣 arr_random = np.random.random((3, 4)) # shape = (3, 4) print(arr_random) # [[0.09919389 0.51211242 0.58016963 0.17999457] # [0.49816204 0.72914405 0.01768119 0.86763625] # [0.89068661 0.0849361 0.72184463 0.75884479]] ``` ---- ### 等差數列 - 1 ```python= # np.arange(stop): 建立 elements 為從 0 到 stop - 1 的矩陣 arr_arange1 = np.arange(5) # stop = 5 print(arr_arange1) # [0 1 2 3 4] # np.arange(start, stop): 建立 elements 為從 start 到 stop - 1 的矩陣 arr_arange2 = np.arange(1, 5) # start = 1, stop = 5 print(arr_arange2) # [1 2 3 4] # np.arange(start, stop, step): 建立 elements 為從 start 到 stop - 1,間隔為 step 的矩陣 arr_arange3 = np.arange(1, 5, 2) # start = 1, stop = 5, step = 2 print(arr_arange3) # [1 3] ``` ---- ### 等差數列 - 2 ```python= # np.linspace(start, stop, num=50, endpoint=True) # 建立 elements 為從 start 到 stop、總共 num 個的矩陣 # endpoint: 假如為 True,stop 會是最後一個 sample,間隔為 (stop - start) / (num - 1) # 否則 stop 不會是最後一個 sample,間隔為 (stop - start) / num。預設為 True。 arr_linspace1 = np.linspace(1, 5, 5) # start = 1, stop = 5, num = 5 print(arr_linspace1) # [1. 2. 3. 4. 5.] arr_linspace2 = np.linspace(1, 5, 5, endpoint=False) # start = 1, stop = 5, num = 5, endpoint = False print(arr_linspace2) # [1. 1.8 2.6 3.4 4.2] ``` ---- ### Questions? --- ## ndarray 基本性質與操作 ---- ### ndarray 基本性質 - 1 ```python= arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr) print(arr.shape) # (2, 3): 代表 2 rows, 3 columns print(arr.ndim) # 2: 代表 2 dimensions print(arr.size) # 6: 代表 6 elements print(arr.dtype) # int64: 代表 elements are int64 type ``` ---- ### ndarray 基本性質 - 2 ```python= arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=np.float64) print(arr) print(arr.shape) # (2, 2, 3): 代表 2 layers, 2 rows, 3 columns print(arr.ndim) # 3: 代表 3 dimensions print(arr.size) # 12: 代表 12 elements print(arr.dtype) # float64: 代表 elements are float64 type ``` ---- ### Transpose Matrix 轉置矩陣 ```python= arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr) # [[1 2 3] # [4 5 6]] print(arr.T) # ndarray.T 代表 transpose # [[1 4] # [2 5] # [3 6]] ``` ---- ### 轉換型態 ```python= # change the type of elements in ndarray arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr) # [[1 2 3] # [4 5 6]] print(arr.dtype) # int64 arr = arr.astype(np.float64) # change type to float64 print(arr) # [[1. 2. 3.] # [4. 5. 6.]] print(arr.dtype) # float64 ``` ---- ### 改變形狀 ```python= # reshape ndarray: arr.reshape(new_shape) arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) arr = arr.reshape((3, 4)) print(arr) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] arr = arr.reshape((2, -1)) # -1: 自動計算 print(arr) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11]] ``` ---- ### Array Indexing ```python= # one dimensional array indexing arr = np.arange(10) print(arr) # [0 1 2 3 4 5 6 7 8 9] print(arr[5]) # 5 ``` ```python= # two dimensional array indexing: arr[row, column] arr = np.arange(12).reshape((3, 4)) print(arr) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(arr[1, 2]) # 6 print(arr[2, 3]) # 11 ``` ---- ### One Dimensional Array Slicing ```python= # one dimensional array slicing: arr[start:stop:step],不包括 stop arr = np.arange(10) print(arr) # [0 1 2 3 4 5 6 7 8 9] print(arr[2:5]) # [2 3 4] print(arr[2:5:2]) # [2 4] print(arr[2:]) # [2 3 4 5 6 7 8 9] print(arr[2:-1]) # [2 3 4 5 6 7 8] print(arr[:5]) # [0 1 2 3 4] print(arr[:]) # [0 1 2 3 4 5 6 7 8 9] print(arr[::2]) # [0 2 4 6 8] print(arr[::-1]) # [9 8 7 6 5 4 3 2 1 0] ``` ---- ### Two Dimensional Array Slicing - 1 ```python= # arr[start:stop:step, start:stop:step] arr = np.arange(12).reshape((3, 4)) print(arr) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(arr[1:3, 2:4]) # [[ 6 7] # [10 11]] print(arr[1:3, :]) # [[ 4 5 6 7] # [ 8 9 10 11]] ``` ---- ### Two Dimensional Array Slicing - 2 ```python= print(arr[:, 1:3]) # [[ 1 2] # [ 5 6] # [ 9 10]] print(arr[:, ::2]) # [[ 0 2] # [ 4 6] # [ 8 10]] print(arr[::-1, ::-1]) # [[11 10 9 8] # [ 7 6 5 4] # [ 3 2 1 0]] ``` ---- ### Array Filtering ```python= arr = np.arange(12) print(arr) # [0 1 2 3 4 5 6 7 8 9 10 11] print(arr > 5) # [False False False False False False True True True True True True] print(arr[arr > 5]) # [ 6 7 8 9 10 11] print(arr[(arr > 5) & (arr < 10)]) # [6 7 8 9] print(arr[(arr < 5) | (arr > 10)]) # [ 0 1 2 3 4 11] arr[(arr > 5)] = 0 print(arr) # [0 1 2 3 4 5 0 0 0 0 0 0] ``` ---- ### Array Copy ```python= arr = np.arange(10) print(arr) # [0 1 2 3 4 5 6 7 8 9] arr2 = arr arr2[0] = 100 print(arr) # [100 1 2 3 4 5 6 7 8 9] print(arr2) # [100 1 2 3 4 5 6 7 8 9] arr3 = arr.copy() arr3[0] = 200 print(arr) # [100 1 2 3 4 5 6 7 8 9] print(arr3) # [200 1 2 3 4 5 6 7 8 9] ``` ---- ### Array Iterating ```python= arr = np.arange(12).reshape((3, 4)) print(arr) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] for row in arr: for element in row: print(element) ``` ---- ### Questions? --- ## Matrix Maths ---- ### Math Operation ```python= arr = np.arange(12) print(arr) # [0 1 2 3 4 5 6 7 8 9 10 11] print(arr + 1) # [ 1 2 3 4 5 6 7 8 9 10 11 12] print(arr - 1) # [-1 0 1 2 3 4 5 6 7 8 9 10] print(arr * 2) # [ 0 2 4 6 8 10 12 14 16 18 20 22] print(arr / 2) # [0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5] print(arr ** 2) # [ 0 1 4 9 16 25 36 49 64 81 100 121] print(arr % 2) # [0 1 0 1 0 1 0 1 0 1 0 1] print(arr // 2) # [0 0 1 1 2 2 3 3 4 4 5 5] ``` ---- ### Matrix Multiplication ```python= # array dot operation arr1 = np.arange(6).reshape((2, 3)) arr2 = np.arange(6).reshape((3, 2)) print(arr1) # [[0 1 2] # [3 4 5]] print(arr2) # [[0 1] # [2 3] # [4 5]] print(np.dot(arr1, arr2)) # [[10 13] # 0*0+1*2+2*4, 0*1+1*3+2*5 # [28 40]] # 3*0+4*2+5*4, 3*1+4*3+5*5 ``` ---- ### Questions? --- ## Matplotlib ---- ### Matplotlib 可以幹嘛? - 數據與資料視覺化 - 畫圖功能齊全 ---- ### 安裝 matplotlib ``` pip install matplotlib --user python3 -m pip install matplotlib --user ``` ### import matplotlib ```python= import matplotlib.pyplot as plt ``` --- ## 折線圖 Line Chart ---- ### 只有 y 值的折線圖 ```python= # plot by 1d ndarray or list y = [2, 3, 1, 4] plt.plot(y) # only plot by y value plt.show() # 顯示整張圖 ``` <p float="left"> <img src="https://hackmd.io/_uploads/r1_wxZu42.png" width="40%" style="background-color:white;"/> </p> ---- ### 有 x 與 y 值的折線圖 ```python= # plot by x and y x = np.arange(0, 5, 0.5) # [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5] y = np.sin(x) # 每個 x 對應的 sin 值 [0., 0.47942554, 0.84147098, 0.99749499, 0.90929743, 0.59847214, 0.14112001, -0.35078323, -0.7568025, -0.97753012] plt.plot(x, y) plt.show() ``` <p float="left"> <img src="https://hackmd.io/_uploads/HyJB-bdNn.png" width="40%" style="background-color:white;"/> </p> ---- ### 修改線的格式 ```python= # plot by x and y x = np.arange(0, 5, 0.5) # [0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5] y = np.sin(x) # 每個 x 對應的 sin 值 # marker: 代表點的樣式, linestyle: 代表線的樣式, color: 代表線的顏色 plt.plot(x, y, marker='o', linestyle='--', color='g') plt.show() ``` <p float="left"> <img src="https://hackmd.io/_uploads/BJPhb-_E2.png" width="50%" style="background-color:white;"/> </p> ---- ### 多條線段 ```python= # plot two lines x = np.arange(0, 5, 0.5) # [0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5] y1 = np.sin(x) # 每個 x 對應的 sin 值 y2 = np.cos(x) # 每個 x 對應的 cos 值 plt.plot(x, y1, marker='o', linestyle='--', color='g', label='sin') plt.plot(x, y2, marker='x', linestyle='-.', color='r', label='cos') plt.xlabel("x label") # x 軸的 label plt.ylabel("y label") # y 軸的 label plt.legend(title="Legend title") # legend 中文為圖例,顯示每條線的 label,title: legend 的 title plt.title("This is title") # 圖表的 title plt.show() ``` 圖附於下一頁 ---- <p float="left"> <img src="https://hackmd.io/_uploads/Sks7zZd43.png" width="80%" style="background-color:white;"/> </p> ---- ### Questions? --- ## 其他圖 ---- ### 分布圖 ```python= # scatter plot x = np.arange(0, 5, 0.5) # [0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5] y = np.sin(x) # 每個 x 對應的 sin 值 plt.scatter(x, y) plt.show() ``` <p float="left"> <img src="https://hackmd.io/_uploads/ry79MW_43.png" width="45%" style="background-color:white;"/> </p> ---- ### 長條圖 ```python= # bar plot x = np.array(["A", "B", "C", "D"]) # x 軸的 label y = np.array([3, 8, 1, 10]) # 每個 x 對應的值 plt.bar(x,y) plt.show() ``` <p float="left"> <img src="https://hackmd.io/_uploads/HJz6zWuEn.png" width="45%" style="background-color:white;"/> </p> ---- ### 直方圖 ```python= # histogram x = np.random.normal(170, 10, 250) # 平均值 170,標準差 10,共 250 個數字,符合常態分佈 print(x.shape) # (250,) plt.hist(x) plt.show() ``` <p float="left"> <img src="https://hackmd.io/_uploads/rktZ7bdN2.png" width="40%" style="background-color:white;"/> </p> ---- ### 圓餅圖 ```python= # pie chart mylabels = ["Apples", "Bananas", "Cherries", "Watermelons"] # 每個 label y = [35, 25, 25, 15] # 每個 label 的值 myexplode = [0.2, 0, 0, 0] # 每個部分離開中心的距離 plt.pie(y, labels=mylabels, explode=myexplode, shadow=True) # shadow: 是否要陰影 plt.show() ``` <p float="left"> <img src="https://hackmd.io/_uploads/By4gN-uVh.png" width="40%" style="background-color:white;"/> </p> ---- ### 顯示多張子圖 ```python= # subplot 2 rows and 3 columns x = np.arange(0, 5, 0.5) # [0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5] # adjust figure size plt.figure(figsize=(10, 7)) # 定義 figure 大小 (width, height) plt.subplot(2, 3, 1) # 2 rows, 3 columns, 1st plot plt.plot(x, x) plt.title("Subplot 1") plt.subplot(2, 3, 2) # 2 rows, 3 columns, 2nd plot plt.plot(x, x**2) plt.title("Subplot 2") plt.subplot(2, 3, 3) # 2 rows, 3 columns, 3rd plot plt.plot(x, x**3) plt.title("Subplot 3") plt.subplot(2, 3, 4) # 2 rows, 3 columns, 4th plot plt.plot(x, x**4) plt.title("Subplot 4") plt.subplot(2, 3, 5) # 2 rows, 3 columns, 5th plot plt.plot(x, x**5) plt.title("Subplot 5") plt.subplot(2, 3, 6) # 2 rows, 3 columns, 6th plot plt.plot(x, x**6) plt.title("Subplot 6") plt.suptitle("This is suptitle") # 整個圖表的 title plt.show() ``` 圖附於下一頁 ---- <p float="left"> <img src="https://hackmd.io/_uploads/HyJUV-_Nn.png" width="80%" style="background-color:white;"/> </p> ---- ### Questions? --- # Thanks!

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully