Yonglei
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
--- title: Intro to GPU Programming tags: presentation margin: 0.1 slideOptions: theme: 'black' margin: 0.08 transition: 'fade' center: true --- <style> .reveal { font-size: 32px; } </style> <p style="text-align: center"><b> <font size=6 color=blueyellow>[ENCCS Webinar]</font><br> <font size=24 color=blueyellow>Practical Introduction to <br>GPU Programming</font> </b></p> $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$ Yonglei Wang (ENCCS / NSC@LiU) --- <p style="text-align: center"><b><font size=12 color=gold>GPU & HPC</font></b></p> --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>What is GPU?</font></b></p> <!-- .slide: style="font-size: 24px;" --> - GPU is a specialized electronic circuit. - Originally developed for computer graphics and image processing. - Now evolved into general-proposed accelerators for massive parallel computing. | ![](https://m.media-amazon.com/images/I/51EL-FaK4XL._AC_UF1000,1000_QL80_.jpg =40%x) ![](https://decisive-angel-514477a09e.media.strapiapp.com/h200_391352089d.png =40%x) | |:-:| | **NVIDIA RTX 4090** & **H200** | ---- ## <p style="text-align: center"><b><font size=6 color=blueyellow>What is GPU?</font></b></p> <!-- .slide: style="font-size: 24px;" --> - GPU is a specialized electronic circuit. - Originally developed for computer graphics and image processing. - Now evolved into general-proposed accelerators for massive parallel computing. | ![](https://www.amd.com/content/dam/amd/en/images/pr-feed/1213366.jpg =40%x) ![](https://i.pcmag.com/imagery/articles/02ON9V98apUZIE57Y9j2BLQ-4..v1662676440.jpg =40%x) | |:--:| | **AMD MI300 series** *vs.* **Intel's ARC series** | --- <p style="text-align: center"><b><font size=6 color=blueyellow>Top 10 HPCs</font></b></p> | ![](https://hackmd.io/_uploads/ryEDEbxakg.jpg =95%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> Ref: [Top 500 list released on Nov. 18, 2024](https://top500.org/lists/top500/2024/11/) ---- <p style="text-align: center"><b><font size=6 color=blueyellow>HPCs in EU</font></b></p> | ![](https://hackmd.io/_uploads/HklE9beT1l.png =45%x) ![EuroHPC-AI-Factories-ecosystem](https://hackmd.io/_uploads/Hk5YcZlTyx.jpg =30%x) <br> ![quantum](https://hackmd.io/_uploads/SyYq5Zlayl.png =45%x)| | :-: | --- <p style="text-align: center"><b><font size=12 color=gold>GPU Architecture</font></b></p> --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>CPU vs. GPU</font></b></p> | ![](https://enccs.github.io/gpu-programming/_images/CPUAndGPU.png =75%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> Ref: [GPU Programming: When, Why and How?](https://enccs.github.io/gpu-programming/) --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>GPU architecture</font></b></p> | ![simd](https://hackmd.io/_uploads/ryvSZGxa1x.png =25%x) ![gpu-simt](https://hackmd.io/_uploads/B1Offzep1x.jpg =60%x) | | :--: | <!-- .slide: style="font-size: 24px;" --> - Computer architecture is characterized by four categories according to Flynn’s taxonomy: - Single instruction stream, single data stream (SISD) - Single instruction stream, multiple data streams (SIMD) - Multiple instruction streams, single data stream (MISD) - Multiple instruction streams, multiple data streams (MIMD) - GPUs are based on ==Single Instruction Multiple Threads (SIMT)== --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>Nvidia GPU architecture</font></b></p> | ![nvidia-gpu](https://hackmd.io/_uploads/BytNifg61e.jpg =80%x) | | :--: | | | <!-- .slide: style="font-size: 24px;" --> - Nvidia (microarchitectures): Tesla (2006), Fermi (2010), Kepler (2012), Maxwell (2014), Pascal (2016), Volta (2017), Turing (2018), Ampere (2020), Ada Lovelace (2022), Hopper (2022), and Blackwell (2024) - ==GPU --> GPC --> TPC --> SM --> CUDA core + Tensor core== - Each SM has L1 cache, and L2 cache is shared among SMs within TPC ---- ## <p style="text-align: center"><b><font size=6 color=blueyellow>Nvidia GPU architecture</font></b></p> | ![rtx-3090](https://hackmd.io/_uploads/Sk0w6Mx6Je.jpg =65%x) ![sm-memory](https://hackmd.io/_uploads/S1S_TGlTyg.png =32%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - ==Ampere GPU== (RTX 3090) has 7 GPCs, 42 TPCs, and 84 SMs - RT (Ray Tracing) cores are dedicated to performing the ray-tracing rendering math computation - Each SM has L1 cache (up to 128 KB), and L2 (up to 6144 KB) cache is shared among GPCs ---- ## <p style="text-align: center"><b><font size=6 color=blueyellow>Nvidia GPU architecture</font></b></p> | ![thread-batching](https://hackmd.io/_uploads/rJTQgQg6Jl.png =26%x) ![hardware-model-1](https://hackmd.io/_uploads/SJmExQeTye.png =29%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - ==SIMT== enables programmers to achieve thread-level parallelism in SMs - SM is based on the scalable multi-thread array, usually called ==CTA== (cooperative thread array), which can scale threads at 1D, 2D and 3D level - ==GPU has hierarchical memories== - registers and local memory at thread level - shared memory at block level - global memory at grid level - constant and texture memories are two specialized memory types --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>AMD GPU architecture</font></b></p> | ![amd-nodelevel](https://hackmd.io/_uploads/SkrBMQgTJg.png =27%x) ![amd-gpu-gcd](https://hackmd.io/_uploads/rkcrfXg6Je.png =60%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - LUMI, one of the EuroHPC JU machines, features AMD MI250 GPUs. - Left: Node-level architecture of a system based on AMD Instinct MI250 accelerator. - Each package has two GCDs (GPU compute dies) - The MI250 OAMs attach to the host system via PCIe Gen 4 x16 links (yellow lines). - Right: Block diagram of an package consisting of two GCDs --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>Intel GPU architecture</font></b></p> | ![intel-gpu](https://hackmd.io/_uploads/SyP1KQga1x.png =75%x)![intel-gpu2](https://hackmd.io/_uploads/BJAQFQlpyg.png =60%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - Intel X$^e$ HPC Core: 8 matrix math units and 8 vector math units - X$^e$ HPC Cores are stacked up with ray tracing units to X$^e$ HPC Slice - ==X$^e$ HPC Core --> X$^e$ HPC Slice --> X$^e$ HPC Stack --> X$^e$ HPC Link== - X$^e$ GPU family consists of a series of micro-architectures - integrated/low power (Xe-LP) - high performance gaming (Xe-HPG) - datacenter/high performance (Xe-HP) - high performance computing (Xe-HPC) --- ## <p style="text-align: center"><b><font size=6 color=blueyellow>Comparison of NVIDIA, AMD, and Intel GPUs</font></b></p> | ![compare-gpu](https://hackmd.io/_uploads/BkCGs7xTJe.png =90%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - All GPU vendors have different strategies to produce GPUs for market needs. - The GPUs used for AI research and HPC have varied efficiencies on high throughput for both single and mixed precision, memories, and compute cores for FP64 (used in scientific computing). - Some advancements include integrated memory in AMD and Intel GPUs, as well as development of multiple GPU dies on a single GPU by AMD and stackable options in Intel GPUs. --- <p style="text-align: center"><b><font size=12 color=gold>GPU Programming Models</font></b></p> --- <p style="text-align: center"><b><font size=6 color=blueyellow>GPU compute APIs</font></b></p> <!-- .slide: style="font-size: 24px;" --> - **Standard C/C++ & Fortran programming** - **Directive-based models** - OpenACC - OpenMP offloading - **Non-portable kernel-based models** - CUDA for Nvidia GPU - HIP for AMD GPU - OneAPI for Intel GPU - **Portable kernel-based models** - SYCL, OpenCL, Alpaka, Kokkos, *etc.* - **High-level programming languages** - Python - Julia --- <p style="text-align: center"><b><font size=6 color=blueyellow>Standard C/C++ & Fortran programming</font></b></p> | ![cppppp](https://hackmd.io/_uploads/H1TV6El61e.png =46%x) ![cppppppppp](https://hackmd.io/_uploads/HysB6ElTyg.png =50%x) | | :--: | --- <p style="text-align: center"><b><font size=6 color=blueyellow>Directive-based models</font></b></p> <!-- .slide: style="font-size: 18px;" --> The serial code is annotated with directives telling compilers to run specific loops and regions on GPU. <!-- .slide: style="font-size: 18px;" --> Two representative directives-based programming models are [**OpenACC**](https://www.openacc.org/) and [**OpenMP offloading**](https://www.openmp.org/). <div style="clear: both;"> <div style="margin-left 10em; margin-right 10em;"> <img src="https://hackmd.io/_uploads/rymWsewxJe.jpg" alt="" height=460x> <img src="https://hackmd.io/_uploads/S1GCigDe1g.jpg" alt="" height=460x> </div> </div> ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Overview of OpenACC</font></b></p> <!-- .slide: style="font-size: 24px;" --> - OpenACC is not a GPU programming language, it is based on compiler directives. - OpenACC allows you to express parallelism in your (C/C++ & Fortran) code. - OpenACC can be used with both Nvidia and AMD GPUs. - Use a single source code across different GPU vendors without modification. - Key directives for OpenACC - Compute Constructs: - `parallel` and `kernel` - used to create a parallel region. - Loop Constructs: - `loop`, `collapse`, `gang`, `worker`, `vector`, etc. - designed to efficiently allocate threads for work-sharing tasks. - Data Management Clauses: - `copy`, `create`, `copyin`, `copyout`, `delete`, and `present` - for managing data transfer between host and device. - Other Constructs: - `reduction`, `atomic`, `cache`, *etc.* - for special operations that prevent slowing down parallel computation. - For more information about OpenACC directives, please refer to this link: [here](https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf). ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Key directives for OpenACC</font></b></p> | ![kernel-c](https://hackmd.io/_uploads/SyBBErxp1x.png =85%x) ![kernel-f](https://hackmd.io/_uploads/SkoFVBxaJe.png =85%x) | | :--: | | | <!-- .slide: style="font-size: 24px;" --> - **Compute Constructs**: parallel vs. kernels - ==Kernels in C/C++ & Fortran== - `nvc -fast -Minfo=all -acc=gpu -gpu=cc80 Hello_World.c` - `nvfortran -fast -Minfo=all -acc=gpu Hello_World_OpenACC.f90` ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Key directives for OpenACC</font></b></p> | ![aaaa-vector-add-c](https://hackmd.io/_uploads/Hk2xIHlpJg.png =60%x) ![aaaa-vector-add-f](https://hackmd.io/_uploads/H1S-IHgaye.png =60%x) | | :-: | | | <!-- .slide: style="font-size: 22px;" --> - **Loop and Data Clauses** - copyin(list) - Allocates memory on GPU and copies data from CPU (host) to GPU when entering a region. - copyout(list) - Allocates memory on GPU and copies data from GPU to CPU (host) when exiting a region. - copy(list) - Allocates memory on GPU, copies data from CPU (host) to GPU when entering a region, and copies data back to CPU (host) when exiting a region. --- <p style="text-align: center"><b><font size=6 color=blueyellow>Non-portable kernel-based models</font></b></p> <!-- .slide: style="font-size: 22px;" --> - Developers write low-level codes that directly communicates with GPU hardware. - Two representative programming models are [CUDA](https://developer.nvidia.com/cuda-toolkit) and [HIP](https://rocm.docs.amd.com/projects/HIP/en/latest/). | ![cuda-c](https://hackmd.io/_uploads/SyADl8xa1l.png =60%x) | | :-: | | | <!-- .slide: style="font-size: 18px;" --> - A qualifier `__global__` to define a device kernel - Calling device functions in main program: - C/C++ example, ==c_function()== - CUDA example, ==cuda_function≪1,1≫()== - ==<<< >>>==, specify numbers of thread blocks and threads to launch kernels - Make sure to synchronize threads - `syncthreads()` - synchronizes all threads within a thread block - `CudaDeviceSynchronize()` - synchronizes a kernel call on host ---- <p style="text-align: center"><b><font size=6 color=blueyellow>CUDA example: Vector addition</font></b></p> | ![cuda-vec-add-1](https://hackmd.io/_uploads/HJ3EX8gTyl.png =45%x) ![cuda-vec-add-2](https://hackmd.io/_uploads/ByMSQ8eake.png =51%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> Source: [Vector_Addition.cu](https://enccs.github.io/gpu-programming/7-non-portable-kernel-models/#vector-addition) ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Performance and profiling</font></b></p> | ![matrix-add](https://hackmd.io/_uploads/rkTpCIlayl.png =60%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> Using CUDA APIs, we can measure the time taken to execute CUDA kernel functions. ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Performance and profiling</font></b></p> | ![cuda-profiling](https://hackmd.io/_uploads/BkKWJceakl.png =90%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - Nvidia provides profiling tools to measure traces and events of CUDA application. - ==Nsight Compute==: Profile kernel calls; both *visual profile-GUI* and *Command Line Interface* can be used to check profiling information of kernel calls. - ==Nsight Graphics==: This is quite useful for analyzing profiling results through GUI. - ==Nsight Systems==: Provides system-wide profiling - *i.e.*, when application involves mixed programming with CPU and GPU (that is, MPI, OpenMP, and CUDA). --- <p style="text-align: center"><b><font size=6 color=blueyellow>Non-portable kernel-based models</font></b></p> ==Hipification== is the process of converting CUDA code to HIP, enabling code to run on both AMD and NVIDIA GPUs. - HIP code uses similar keyword as that for CUDA code, making it easy to port simple CUDA kernels to HIP by changing a few library-specific calls. - launch Kernel functions - cuda_function<<<blocks, threads>>>() - hip_function<<<blocks, threads>>>() - synchronization - cudaDeviceSynchronize() - hipDeviceSynchronize() - HIP provides tools (hipify-perl or hipify-clang) to convert CUDA syntax to HIP syntax. --- <p style="text-align: center"><b><font size=6 color=blueyellow>Portable kernel-based models</font></b></p> <!-- .slide: style="font-size: 22px;" --> - ==Cross-platform portability ecosystems== typically provide a higher-level abstraction layer which provide a convenient and portable programming model for GPU programming. - For C++, the most notable cross-platform portability ecosystems are [**Alpaka**](https://github.com/alpaka-group/alpaka), [**Kokkos**](https://github.com/kokkos/kokkos), [**OpenCL**](https://www.khronos.org/opencl/), and [**SYCL**](https://www.khronos.org/sycl/). - Pros and cons of cross-platform portability ecosystems - Pros - The amount of code duplication is minimized - Less knowledge of underlying architecture is needed for initial porting (Kokkos, SYCL) - Cons - These models are relatively new and not very popular yet - Limited learning resources compared to CUDA & HIP - Some low-level APIs and separate-source kernel models are less user friendly - References and code examples - [Alpaka and openPMD workshop](https://www.hlrs.de/training/2024/alpaka-openpmd-hack) - [LAMMPS KOKKOS package](https://docs.lammps.org/Speed_kokkos.html) - [GROMACS package](https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html) - ==[GPU Programming: When, Why and How?](https://enccs.github.io/gpu-programming/)== --- <p style="text-align: center"><b><font size=6 color=blueyellow>Comparison of GPU compute APIs</font></b></p> <!-- .slide: style="font-size: 18px;" --> | API | Portability | Ease of Use | Performance | Primary Vendor | Best For | | :--: | :--: | :--: | :--: | :--: | :--: | | OpenACC | Medium (NVIDIA & AMD) | High (directive-based) | Medium-High | NVIDIA, AMD (limited) | Scientific computing and HPC with minimal code modifications | | OpenMP Offloading | High (Cross-vendor) | Medium (directive-based) | High | Intel, AMD, NVIDIA | Parallelizing CPU and GPU workloads using OpenMP pragmas for performance portability | | CUDA | Low (NVIDIA only) | Medium | Very High | NVIDIA | High-performance compute on NVIDIA GPUs | | HIP | Medium (AMD & NVIDIA) | Medium | High | AMD, NVIDIA (via Hipify) | Porting CUDA applications to AMD GPUs with minimal code changes | | SYCL | High (Cross-vendor) | Medium | High | Intel, AMD, NVIDIA | Heterogeneous computing with single-source C++ | | OpenCL | High (Cross-vendor) | Medium | Medium | Cross-vendor | General-purpose parallel programming across multiple hardware architectures | --- <p style="text-align: center"><b><font size=6 color=blueyellow>Python libraries for GPU programming</font></b></p> <!-- .slide: style="font-size: 24px;" --> | Library | Best For | Supports | | :-----: | :------: | :------: | | Numba.cuda | General CUDA GPU programming | NVIDIA | | CuPy | NumPy-like GPU acceleration | NVIDIA | | PyCUDA | Low-level CUDA programming | NVIDIA | | PyOpenCL | Cross-vendor GPU programming | NVIDIA, AMD, Intel | | SYCL (dpctl) | Cross-platform parallelism | Intel, AMD, NVIDIA | | TensorFlow | Deep learning | NVIDIA, AMD | | PyTorch | Machine learning | NVIDIA, AMD | | OpenMP (Numba) | CPU & GPU parallelism | Intel, AMD, NVIDIA | ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Python libraries for AI research</font></b></p> <!-- .slide: style="font-size: 18px;" --> | API/Framework | Primary Use | GPU Support | Multi-GPU Support | Best For | | :--: | :--: | :--: | :--: | :--: | | TensorFlow | DL, neural networks, custom ML models | NVIDIA (CUDA), AMD (ROCm) | Yes, using Mirrored Strategy or Distribution Strategy | General-purpose ML and DL | | PyTorch | DL and neural networks | NVIDIA (CUDA), AMD (ROCm) | Yes, using DataParallel and DistributedDataParallel | Research and production DL, flexibility | | Hugging Face (Transformers) | NLP with transformers | NVIDIA, AMD (via PyTorch or TensorFlow) | Yes, using PyTorch or TensorFlow for multi-GPU | Pre-trained transformer models for NLP tasks | | Keras | High-level neural networks API | NVIDIA (CUDA), AMD (ROCm) | Yes, using TensorFlow for multiGPU | Simplified DL with TensorFlow backend | | JAX | High-performance ML and scientific computing | NVIDIA (CUDA), AMD (ROCm), Intel (oneAPI) | Yes, using XLA for GPU acceleration | Numerical computing, DL with high performance | | RAPIDS | GPU-accelerated data science and ML | NVIDIA GPUs | Yes, via Dask and cuML for ML tasks | Data science with cuML, cuDF, and Dask | --- <p style="text-align: center"><b><font size=6 color=blueyellow>Julia libraries for AI research</font></b></p> - Julia is a high-performance, dynamic programming language designed for numerical scientific computing. - It was designed specifically to solve the ==two-language problem==. - Interpreted languages like Python and R translate instructions line by line. - Compiled languages like C/C++ and Fortran are translated by compiler prior to running code. - Julia provides both high performance and ease of use in a single language. - Key Features of Julia - Using Just-In-Time (JIT) compilation to achieve high performance computing - Simple & expressive syntax (like Python) - Powerful for numerical & scientific computing with built-in parallel computing support - Interoperability with other programming languages | ![julia-feature](https://hackmd.io/_uploads/SkxNasep1e.png =50%x) | | :-: | | | <!-- .slide: style="font-size: 16px;" --> | Library | Purpose | Similar to | GPU Support? | | :-----: | :-----: | :--------: | :----------: | | Flux.jl | Deep learning | PyTorch, TensorFlow | ✅ Yes (CUDA) | | MLJ.jl | Machine learning | scikit-learn | ✅ Yes | | Turing.jl | Probabilistic modeling, Bayesian learning | PyMC3, Stan | ✅ Yes | | AlphaZero.jl | Reinforcement learning | DeepMind AlphaZero | ✅ Yes | | Knet.jl | Deep learning, Fast GPU AI research | PyTorch | ✅ Yes | | ReinforcementLearning.jl | Reinforcement Learning | DeepMind AlphaZero | ✅ Yes | --- <p style="text-align: center"><b><font size=12 color=gold>ENCCS <br>Lesson materials & <br>Training events</font></b></p> --- <p style="text-align: center"><b><font size=6 color=blueyellow>Lesson materials & Seasonal training events</font></b></p> | ![lesson-material](https://hackmd.io/_uploads/S1rlH2lTkl.png =55%x) | | :-: | | | <!-- .slide: style="font-size: 20px;" --> - Link: https://hackmd.io/@yonglei/mermaid-enccs-lesson - Seasonal training events - GPU Programming / OpenACC-CUDA workshop - Practical machine/deep Learning - Python/Julia HPDA/HPC - Best practice HPC training - Quantum autumn school ---- <p style="text-align: center"><b><font size=6 color=blueyellow>Nvidia bootcamps</font></b></p> | ![N-Ways-GPU-2025-04_image-1](https://hackmd.io/_uploads/By4w8ngakx.png =50%x) | | :-: | | | <!-- .slide: style="font-size: 24px;" --> - [N-Ways to GPU Programming, Apr. 8-9](https://enccs.se/events/bootcamp-n-days-gpu-programming/) - [AI for Science, May 27-28](https://events.vsc.ac.at/event/186/) - [Multi-GPU Programming, Jun. 17–18](https://events.vsc.ac.at/event/187/) - [AI Multi-GPU Multi-Node Profiling, Jul. 9-10](https://events.vsc.ac.at/event/188/) --- <p style="text-align: center"><b><font size=6 color=blueyellow>Take-home message</font></b></p> <!-- .slide: style="font-size: 24px;" --> - GPU & HPC - GPU architecture - GPU programming models - GPU compute APIs - Standard C/C++ & Fortran programming - Directive-based models - OpenACC, OpenMP offloading - Non-portable kernel-based models - CUDA, HIP - Portable kernel-based models - SYCL, OpenCL, Alpaka, Kokkos, etc. - High-level programming languages - Python, Julia - Lesson materials - Training events & Nvidia bootcamps

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully