HackMD
  • Beta
    Beta  Get a sneak peek of HackMD’s new design
    Turn on the feature preview and give us feedback.
    Go → Got it
      • Create new note
      • Create a note from template
    • Beta  Get a sneak peek of HackMD’s new design
      Beta  Get a sneak peek of HackMD’s new design
      Turn on the feature preview and give us feedback.
      Go → Got it
      • Sharing Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • More (Comment, Invitee)
      • Publishing
        Please check the box to agree to the Community Guidelines.
        Everyone on the web can find and read all notes of this public team.
        After the note is published, everyone on the web can find and read this note.
        See all published notes on profile page.
      • Commenting Enable
        Disabled Forbidden Owners Signed-in users Everyone
      • Permission
        • Forbidden
        • Owners
        • Signed-in users
        • Everyone
      • Invitee
      • No invitee
      • Options
      • Versions and GitHub Sync
      • Transfer ownership
      • Delete this note
      • Template
      • Save as template
      • Insert from template
      • Export
      • Dropbox
      • Google Drive Export to Google Drive
      • Gist
      • Import
      • Dropbox
      • Google Drive Import from Google Drive
      • Gist
      • Clipboard
      • Download
      • Markdown
      • HTML
      • Raw HTML
    Menu Sharing Create Help
    Create Create new note Create a note from template
    Menu
    Options
    Versions and GitHub Sync Transfer ownership Delete this note
    Export
    Dropbox Google Drive Export to Google Drive Gist
    Import
    Dropbox Google Drive Import from Google Drive Gist Clipboard
    Download
    Markdown HTML Raw HTML
    Back
    Sharing
    Sharing Link copied
    /edit
    View mode
    • Edit mode
    • View mode
    • Book mode
    • Slide mode
    Edit mode View mode Book mode Slide mode
    Note Permission
    Read
    Only me
    • Only me
    • Signed-in users
    • Everyone
    Only me Signed-in users Everyone
    Write
    Only me
    • Only me
    • Signed-in users
    • Everyone
    Only me Signed-in users Everyone
    More (Comment, Invitee)
    Publishing
    Please check the box to agree to the Community Guidelines.
    Everyone on the web can find and read all notes of this public team.
    After the note is published, everyone on the web can find and read this note.
    See all published notes on profile page.
    More (Comment, Invitee)
    Commenting Enable
    Disabled Forbidden Owners Signed-in users Everyone
    Permission
    Owners
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Invitee
    No invitee
       owned this note    owned this note      
    Published Linked with GitHub
    Like1 BookmarkBookmarked
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: DeepNN Notes on Why Deep Networks Generalize tags: DeepNN, Teaching, Lecture Notes description: Lecture notes on how classical learning theory and generalisation theory was unable to explain the good performance of deep neural netwoks, and new insights that were needed --- # Deep Learning Shouldn't Work (But it Does) In these notes, to accompany lecture 3 of the DeepNN module, I'm going to illustrate the classical learning theory view on generarlisation in machine learning, and explain how it fails to predict the surprisingly good generalisation performance of huge deep neural networks. I'm then going to briefly mention a few new insights and tools that allow us to understand why deep learning works. ## Classical view on generalisation. Recall components of the classical view of genearlisation from [Neil's notes](https://mlatcl.github.io/deepnn/background/background-generalisation.html): * expected error/risk/generalisation error $R(\mathbf{w})$: how well a model with parameters $\mathbf{w}$ does on a test distribution * empirical loss $\hat{R}(\mathbf{w}, \mathcal{D}) = \frac{1}{N}\sum L(x_n, y_n, \mathbf{w})$: the expected loss on a finite training dataset $\mathcal{D} = \{(x_n, y_n), n=1\ldots N\}$ * a model class: the different values $\mathbf{w}$ can take, or the different predictors we can implement by setting the value of $\mathbf{w}$ The following picture illustrates how traditional learning theory reasons about generalisation of various models: ![](https://i.imgur.com/qNXjBnc.png) Our ultimate goal is to find parameters within the model class which have sufficiently low risk or test loss, which is illustrated by the magenta set. In empirical risk minimization (ERM), we do this by minimising the empirical loss on a given training dataset assumed to be sampled from the same distribution that appears in the definition of the risk. The model that minimises the empirical risk (or perhaps a regularised version of it) is shown by the green star. The question of generalisation is, under what assumptions can we guarantee that the green star falls within the magenta set with high probability (we can't guarantee that this happens all the time, which is what the so called *no free lunch* theoems state). Most results in learning theory gave guarantees in tems of the size or complexity of the model class: If the model class is sufficiently small, with sufficient data we can guarantee that minimising empirical risk leads to low (test) risk. There are a number of different results along these lines and a number of different ways to capture the richness of model class, including [Rademacher complexity](https://en.wikipedia.org/wiki/Rademacher_complexity) and the [VC-dimension](https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_dimension). But the story has largely been the same: the larger the model class, the less we can expect machine learning to generalise. However, the model class described by deep neural networks is very rich. Thus, based on the complexity of model class, we shouldn't expect deep learning to work. A lot of people were skeptical about ever-growing neural networks, and expected them to stop working once the model class is too rich for generalisation ## The missing piece of the story But despite these predictions, deep neural networks do seem to generalise well (i.e. the gap between training and test loss is often small). So what's going on? ### Multiple "global" minima There are a number of ways deep learning is different from the classical view. One important difference is that the minimum of the empirical risk is not unique, in the following sense. The loss function in deep learning is non-convex, and as such it may have many local minima. People initially thought this is a problem, because gradient-based optimisation might get stuck in a poor local minimum and achieve sub-optimal performance. However, what seems to be the case, at least in some applications, is that although there are many local optima, most of these are virtually equally good. For example, in image classification with large enough neural networks, there are several local minima, each of which achieve zero misclassiciation error on the training set. In this sense, it makes sense to think of these very good local minima as if they were all multiple global minima, as Neil likes to say. So the following picture is more appropriate in this situation: ![](https://i.imgur.com/8QF5yp4.png) Instead of a single green star, we now have a whole set of models which are virtually indistinguishably good on the training set. The reasoning of generalisation theory would be to guarantee that the green set to be inside the magenta set with a high probability. However, this **does not happen** for large neural networks. Several papers demonstrate that it is possible to find neural networks that have zero training error (green set) yet arbitrarily poor test error. One of the first paper that highlighted this was ([Zhang et al, 2016](https://arxiv.org/abs/1611.03530)) with the title "Understanding deep learning requires rethinking generalization". So, if classical genealisation theory doesn't work, how can we explain why deep learning works at all? Turns out, we have to consider more than just the model class and loss function, and also take into account the optimisation algorithm we use to find one of the minima in the green set. Let's run a thought experiment where we train a neural netwok on the same dataset multiple times, but from a different randomly chosen initialization each time. Because the initialisation is random, we'll end up with a distibution of trained models, it's likely we will find a different "global" minimum each time: ![](https://i.imgur.com/dykku9I.png) What seems to be the case is that stochastic gradient descent (SGD) with random initialisation does not find all of the minima of the training loss with equal probability. It seems to prefer certain minima over others, and this bias or preference turns out to be in favour of minima that generalise well. In other words, while the whole of the green set cannot be guaranteed to be inside the magenta set, the majority of the solutions that SGD finds inside this green set are. Making this kind of statement required completely new approaches to generalisation theory, which also considers the *implicit regularisation* of optimization methods. ## Further reading: new insights Here I give a few pointers to new insights that the community has developed in the past 5 years to help us understand why deep learning works. ### Infinite-width networks, neural tangent kernels Interesting insights can be gained by studying the limit where we increase the number of units at every layer of a neural network to infinity. This regime has been studied before, and when we randomly choose the weight of such an infinitely wide network, they start to behave like Gaussian processes ([Neal, 1994](https://arxiv.org/pdf/1912.02803.pdf)). However, we know know a bit more about infinitely wide networks: we can also tell how they evolve during gradient descent optimisation. This allows us to connect neural network training with kernel methods, whose generalisation properties are better understood. I wrote a [blog post](https://arxiv.org/pdf/1912.02803.pdf) on NTKs if you're intersted in more detail. ### Study of deep linear models As I mentioned elsewhere in the notes, the study of deep linear networks can teach us a lot about the implicit regularisation behaviour of gradient descent. [Arora et al, (2019)](https://papers.nips.cc/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf) consider the problem of matrix completion, with deep linear models. As discussed above, deep linear models (deep nets without the nonlinearity $\phi$) are the same as ordinary linear models, because the composition of linear functions is still a linear function. Yet, it turns out that if you redundantly parametrise linear functions in this way, and train them using gradient descent, you get different solutions depending on the parametrization and initialization. The reason why I mention this here is to highlight that reasoning about the model class neural networks can represent only tells you a small part of the story as to why they are useful. ### New generalisation theory Since the seminal paper of [Zhang et al, (2016)](https://arxiv.org/abs/1611.03530), researchers have been trying to develop new bounds on the generalisation of various deep learning algorithms. There are several avenues for current research, a recent paper titled "Fantastic Generalization Measures and Where to Find Them" ([Jiang et al, 2020](https://arxiv.org/abs/1912.02178)) surveys the most promising current approaches. There was even a competition held at the NeurIPS 2020 conference on which theory can predict the generalisation error of neural networks better ([Jiang et al, 2020](https://arxiv.org/abs/2012.07976)).

    Import from clipboard

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lost their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template is not available.


    Upgrade

    All
    • All
    • Team
    No template found.

    Create custom template


    Upgrade

    Delete template

    Do you really want to delete this template?

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Tutorials

    Book Mode Tutorial

    Slide Mode Tutorial

    YAML Metadata

    Contacts

    Facebook

    Twitter

    Feedback

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions

    Versions and GitHub Sync

    Sign in to link this note to GitHub Learn more
    This note is not linked with GitHub Learn more
     
    Add badge Pull Push GitHub Link Settings
    Upgrade now

    Version named by    

    More Less
    • Edit
    • Delete

    Note content is identical to the latest version.
    Compare with
      Choose a version
      No search result
      Version not found

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub

        Please sign in to GitHub and install the HackMD app on your GitHub repo. Learn more

         Sign in to GitHub

        HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Available push count

        Upgrade

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Upgrade

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully