rot256
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# Generalized Bulletproof Notation from https://doc-internal.dalek.rs/bulletproofs/notes/r1cs_proof/index.html ## The Relation ("Extended R1CS") Bulletproofs provide a proof for the following relation: $$ W_L \cdot \vec{a_L} + W_R \cdot \vec{a_R} + W_O \cdot \vec{a_O} = W_V \cdot \vec{v} + \vec{c} \ \land \ \vec{a_L} \circ \vec{a_R} = \vec{a_O} $$ Where $\vec{a_L}, \vec{a_R}, \vec{a_O}, \vec{v}$ are the witnesses, with $\vec{v}$ being the opening of a number of (dimension 1) Pedersen commitments. It is not quite the standard def. of R1CS, but clearly equivalent. Because we are going to have a "pre-committed" vectors $\vec{a_C}$ (a Pedersen commiment of some high dimension), we instead consider a generalization i.e. $$ W_L \cdot \vec{a_L} + W_R \cdot \vec{a_R} + W_O \cdot \vec{a_O} + W_C \cdot \vec{a_C} = W_V \cdot \vec{v} + \vec{c} \\ \ \land \ \\ \vec{a_L} \circ \vec{a_R} = \vec{a_O} $$ Of course, we could have even more of these committed "linear" terms $\vec{a_C}$, but for simplicity in this explaination let us keep it at 1 -- generalizating it further is an easy exercise left to the reader. ## R1CS $\rightarrow$ Sum of Inner Products Rewrite: $$ \vec{a_L} \circ \vec{a_R} - \vec{a_O} = \vec{0} $$ We can sample $\vec{y} = (1, \ldots, y^{n-1})$ to reduce it to a single field element: $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} - \vec{a_O} \rangle = 0 $$ The same trick can be applied to every row of $W_L, W_R, W_V, W_C, W_O$ by sampling $\vec{z} = (1, \ldots, z^{n-1})$ and noting: $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} - \vec{a_O} \rangle = 0 \land W_L \cdot \vec{a_L} + W_R \cdot \vec{a_R} + W_O \cdot \vec{a_O} + W_C \cdot \vec{a_C} - W_V \cdot \vec{v} - \vec{c} = \vec{0} $$ If and only if (with overhelming probability over $z$): $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} - \vec{a_O} \rangle + z \cdot \langle \vec{z}, W_L \cdot \vec{a_L} + W_R \cdot \vec{a_R} + W_O \cdot \vec{a_O} + W_C \cdot \vec{a_C} - W_v \cdot \vec{v} - \vec{c} \rangle = 0 $$ (we went from an equation over vectors to single field elements using a challenge $z$) Moving stuff around and seperating the inner products, rewrite the second part of the expression: $$ \langle z \vec{z} \cdot W_L, \vec{a_L} \rangle + \langle z \vec{z} \cdot W_R, \vec{a_R} \rangle + \langle z \vec{z} \cdot W_O, \vec{a_O} \rangle + \langle z \vec{z} \cdot W_C, \vec{a_C} \rangle - \langle z \vec{z} \cdot W_V, \vec{v} \rangle - \langle z \vec{z}, \vec{c} \rangle = 0 $$ Let us define: $$ \vec{w_L} = z \cdot \vec{z} \cdot W_L \in \mathbb{F}^n \\ \vec{w_R} = z \cdot \vec{z} \cdot W_R \in \mathbb{F}^n \\ \vec{w_V} = z \cdot \vec{z} \cdot W_V \in \mathbb{F}^n \\ \vec{w_C} = z \cdot \vec{z} \cdot W_C \in \mathbb{F}^n \\ \vec{w_O} = z \cdot \vec{z} \cdot W_O \in \mathbb{F}^n \\ w_c = \langle z \cdot \vec{z}, \vec{c} \rangle \in \mathbb{F} $$ Note that the verifier can just compute these vectors by himself (since the matrixes, the circuit relation, is public). We are now left with: $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} - \vec{a_O} \rangle + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \langle \vec{w_O}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle - \langle \vec{y}, \vec{a_O} \rangle+ \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \langle \vec{w_O}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ Which enforces sat. of the extended R1CS. However, the expression above has *many* inner products. Since we need to do a folding argument for every inner product we would like to avoid this, so, how do we reduce these to a single inner product? First an intermezzo. ## Intermezzo: Vector Polynomials ### Definition An "$n$" dimensional "vector polynomial" consists of $n$ polynomials "in parallel": $$ \vec{f}(X) = (f_1(X), \ldots, f_n(X)) = \sum_{i=0}^d \vec{a_i} \cdot X^i \in \mathbb{F}[X]^n $$ A polynomial over the $\mathbb{F}$-module $\mathbb{F}^n$. Note that for $x \in \mathbb{F}$ we get $\vec{f}(x) \in \mathbb{F}^n$ This notion is useful, because Pedersen commitments allow us to commit to a vector polynomial efficiently (independently of the dimension) and homomorphically evaluate every coordinate of the vector polynomial: $$ \mathsf{Com}(\vec{f}(X)) = (\mathsf{PedersenVec}(\vec{a_0}), \ldots, \mathsf{PedersenVec}(\vec{a_d})) $$ ($d$ commitments to $n$-dimensional vectors) ### Inner Product of Vector Polyomials The "inner product" between two vector polynomials is defined in the inutitive way (for any module over any ring): taking the coordinate-wise product of polynomials and summing: $$ \langle \vec{f}(X), \vec{g}(X) \rangle = \sum_i f_i(X) \cdot g_i(X) \in \mathbb{F}[X] $$ Note that $\forall x. \langle \vec{f}, \vec{g} \rangle(x) = \langle \vec{f}(x), \vec{g}(x)\rangle$ and $\deg(\langle \vec{f}, \vec{g} \rangle) = \deg(\vec{f}) + \deg(\vec{g})$. This already hints at the approach to check correctness of an inner product between vector polynomials, since we can homomorphically compute commitments to $\vec{f}(x) \in \mathbb{F}$ and $\vec{g}(x) \in \mathbb{F}$ at any public $x$ efficiently by operating on the commitments to the coefficients, to check $\langle \vec{f}, \vec{g} \rangle = \vec{h}$ at a random point $x$ ## Sum of Inner Products $\rightarrow$ Single Inner Product Let us now see why inner products between vector polynomials are useful to us. Suppose we have two inner products: $$ \Delta = \langle \vec{a}, \vec{b} \rangle + \langle \vec{c}, \vec{d} \rangle $$ If I define the vector polynomials (left/right): $$ \vec{f_L}(X) = \vec{a} \cdot X + \vec{c} \cdot X^2 $$ $$ \vec{f_R}(X) = \vec{b} \cdot X + \vec{d} $$ And consider the inner product, then $\Delta$ lands in the square term: $$ \langle \vec{f_L}, \vec{f_R} \rangle(X) = \delta_0 + \delta_1 \cdot X + \Delta \cdot X^2 + \delta_3 \cdot X^3 \in \mathbb{F}[X]$$ Where $\delta_0, \delta_1, \delta_3$ are some cross-term garbage. More generally: we define a "left polynomial" where powers *increase* for every left term in the series of inner products and a "right polynomial" where the powers *decrease* for every right term, then the terms will "align" at the "middle power". i.e. in general, suppose we have: $$ \Delta = \sum_{i=1}^t \langle \vec{L_i}, \vec{R_i} \rangle $$ Then we define: $$ \vec{f_L}(X) = \sum_{i=1}^t \vec{L_i} \cdot X^i \\ \vec{f_R}(X) = \sum_{i=1}^{t} \vec{R_i} \cdot X^{t - i} $$ In which case, the $t$'th coeficient of $\langle \vec{f_L}, \vec{f_R} \rangle(X)$ is $\Delta$, neato! This observation suggest the following approach to reduce a sum of multiple inner products, given commitments to every vector, to a single inner product as follows: 1. Prover sends commitments to $\{ \delta_i \}_{i \in 0, \ldots, 2 \cdot t - 1}$ the coefficients, were we are intrested in $\delta_t = \Delta$, which is usually implicit (e.g. fixed to $0$). Then both parties locally define: $$ \vec{f_L}(X) = \sum_{i=1}^t \vec{L_i} \cdot X^i \in \mathbb{F}[X]^n \\ \vec{f_R}(X) = \sum_{i=1}^{t} \vec{R_i} \cdot X^{t - i} \in \mathbb{F}[X]^n \\ g(X) = \sum_{i = 0}^{2 \cdot t - 1} \delta_i \cdot X^i \in \mathbb{F}[X] $$ 1. Verifier samples $x \gets \mathbb{F}$ 1. Both sides compute commitments to the vectors: $$ \vec{f_L}(x), \vec{f_R}(x)\in \mathbb{F}^n $$ And a commitment to the field element $g(x) \in \mathbb{F}$, using the homomorphic property of the Pedersen commitments. We now have just a single inner product claim about Pedersen commitments: $$ \langle \vec{f_L}(x), \vec{f_R}(x) \rangle = g(x) $$ ## Hadamard Products between Secrets and Public Values Given $\mathsf{PedersenVec}_{\vec{G}}(\vec{V})$ we can simply define $$ \mathsf{PedersenVec}_{[\vec{C}^{-1}] \ \circ \ \vec{G}}(\vec{V} \circ \vec{C}) = \mathsf{PedersenVec}_{\vec{G}}(\vec{V}) $$ In other words, we can homomorphically compute a Hadamard product, where one side is public, simply by a change of basis: rather than a commitment to $\vec{V}$ in bais $\vec{G}$ it is a commitment to $\vec{V} \circ \vec{C}$ in basis $\left[\vec{C}^{-1}\right] \circ \vec{G}$, in other words: if the commitment was opened you would check the correctness by re-commiting using $\left[\vec{C}^{-1}\right] \circ \vec{G}$. ## What Inner Products? Now that we have the components let us massage our expression from before: $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle - \langle \vec{y}, \vec{a_O} \rangle+ \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \langle \vec{w_O}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ We are going to massage this so that it is on a form where our newly dicussed techniques apply, we have two goals: 1. Reduce the number of inner products (for efficiency) by collecting common terms. 2. Get rid of the Hadamard product betwen two secrets: $\vec{a_L} \circ \vec{a_R}$. Start by combining $\vec{a_O}$ terms: $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle - \color{brown}{\langle \vec{y}, \vec{a_O} \rangle} + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \color{brown}{\langle \vec{w_O}, \vec{a_O} \rangle} + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \color{brown}{\langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle} + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ Note that the left size of the inner product $\langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle$ is public, so lets move one secret two each side, using $\langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle = \langle \vec{a_L}, \vec{y} \circ \vec{a_R} \rangle$ get rid of the Hadamard product between secret values: $$ \color{magenta}{ \langle \vec{y}, \vec{a_L} \circ \vec{a_R} \rangle} + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \color{magenta}{ \langle \vec{a_L}, \vec{y} \circ \vec{a_R} \rangle } + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_R}, \vec{a_R} \rangle + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ Note that we *know* how to deal with a Hadamard product between a secret and a public value. Using $\color{blue}{\langle \vec{a_R}, \vec{w_R} \rangle = \langle \vec{w_R} \circ (\vec{y})^{-1}, \vec{a_R} \circ \vec{y} \rangle}$ rewrite: $$ \langle \vec{a_L}, \vec{y} \circ \vec{a_R} \rangle + \langle \vec{w_L}, \vec{a_L} \rangle + \color{blue}{\langle \vec{w_R}, \vec{a_R} \rangle} + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle \\ = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \langle \vec{a_L}, \vec{y} \circ \vec{a_R} \rangle + \langle \vec{w_L}, \vec{a_L} \rangle + \color{blue}{\langle \vec{w_R} \circ (\vec{y})^{-1}, \vec{a_R} \circ \vec{y} \rangle} + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle \\ = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ Collect $\vec{y} \circ \vec{a_R}$ terms (our motivation for the previous step): $$ \color{green}{ \langle \vec{a_L}, \vec{y} \circ \vec{a_R} \rangle } + \langle \vec{w_L}, \vec{a_L} \rangle + \color{green}{ \langle \vec{w_R} \circ (\vec{y})^{-1}, \vec{a_R} \circ \vec{y} \rangle} + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \\ \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \color{green}{ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1},\vec{y} \circ \vec{a_R} \rangle } + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle = \\ \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ Add $\color{red}{\delta(y, z) = \langle (\vec{y})^{-1} \circ \vec{w_R}, \vec{w_L} \rangle}$ to both sides: $$ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}, \vec{y} \circ \vec{a_R} \rangle + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle \\ = \langle \vec{w_V}, \vec{v} \rangle + w_c \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}, \vec{y} \circ \vec{a_R} \rangle + \langle \vec{w_L}, \vec{a_L} \rangle + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle + \color{red}{\langle (\vec{y})^{-1} \circ \vec{w_R}, \vec{w_L} \rangle} \\ = \langle \vec{w_V}, \vec{v} \rangle + w_c + \color{red}{\delta(y, z)} \in \mathbb{F} $$ Note that $\delta(y, z)$ does not depend on the witness! (the verifier can compute it) Combine $\vec{w_L}$ terms: $$ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}, \vec{y} \circ \vec{a_R} \rangle + \color{orange}{\langle \vec{w_L}, \vec{a_L} \rangle} + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle \\ + \langle \vec{w_C}, \vec{a_C} \rangle + \color{orange}{\langle (\vec{y})^{-1} \circ \vec{w_R}, \vec{w_L} \rangle} = \langle \vec{w_V}, \vec{v} \rangle + w_c + \delta(y, z) \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}, \vec{y} \circ \vec{a_R} \rangle + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle \\ + \langle \vec{w_C}, \vec{a_C} \rangle + \color{orange}{\langle (\vec{y})^{-1} \circ \vec{w_R} + \vec{a_L}, \vec{w_L} \rangle} = \langle \vec{w_V}, \vec{v} \rangle + w_c + \delta(y, z) \in \mathbb{F} $$ Combine $\vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}$ terms: $$ \color{purple}{ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}, \vec{y} \circ \vec{a_R} \rangle } + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle \\ + \langle \vec{w_C}, \vec{a_C} \rangle + \color{purple}{\langle (\vec{y})^{-1} \circ \vec{w_R} + \vec{a_L}, \vec{w_L} \rangle} = \langle \vec{w_V}, \vec{v} \rangle + w_c + \delta(y, z) \in \mathbb{F} $$ <center><b>Becomes</b></center> $$ \color{purple}{ \langle \vec{a_L} + \vec{w_R} \circ (\vec{y})^{-1}, \vec{y} \circ \vec{a_R} +\vec{w_L} \rangle } + \langle \vec{w_O} - \vec{y}, \vec{a_O} \rangle + \langle \vec{w_C}, \vec{a_C} \rangle \\ = \langle \vec{w_V}, \vec{v} \rangle + w_c + \delta(y, z) \in \mathbb{F} $$ So in the end we have 3 inner products on the left: in general we would be left with $2 + m$ inner products of $m$ vector Pedersen commitments. All these are combined into a single inner product using the previous technique based on vector polynomials. Note that during verification the right side is a commitment to a single field element! ## The Folding Argument: Just Regular Bulletproofs from Here. At this point we have a single inner product to verify. The folding argument (not covered here) proves: $$ \left\{ ( \vec{a} \in \mathbb{F}^{n}, \vec{b} \in \mathbb{F}^{n} ) : P = \langle \vec{a}, \vec{G} \rangle + \langle \vec{b}, \vec{H} \rangle \land c = \langle \vec{a}, \vec{b} \rangle \right\} $$

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully