FANFNA
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # CHAPTER 5 [TOC] ## 一、Eigenvalue and Eigenvector :::success 對於一個給定的線性變換,它的特徵向量 v 經過這個線性變換之後,得到的新向量仍然與原來的v保持在同一條直線上,但其長度也許會改變。 用矩陣表示該問題的話,若 A 為一 n×n 矩陣,在 Rn 中是否存在著非零向量 x,使得 Ax 與 x 之間存在著倍數關係? ::: :::danger ### **Eigenvalue, Eigenvector** : 如下圖之定義與解說。 Eigenspace : 若A為一nxn矩陣,且λ為A的一個特徵值,則對應於λ的所有特徵向量與零向量可構成一個Rn的子空間,稱為特徵空間。 ![](https://i.imgur.com/QjSNItI.png =600x500) ::: :::danger ### Characteristic Polynomial and Characteristic Equation : ![](https://i.imgur.com/QdwmCib.png) ::: :::warning **利用特徵多項式求特徵空間的例題:** ![](https://i.imgur.com/cYdUv2J.png) ![](https://i.imgur.com/WAQ6DpX.png) ![](https://i.imgur.com/zBzD1WI.png) ![](https://i.imgur.com/Co16l2d.png) ::: ## 二、矩陣相似性 (Matrix Similarity) ### 1. 相似定義與性質 :::success - 定義 : 若存在可逆矩陣P使得 P^(-1)^AP=B,我們稱 A 相似於 B。 相似的意義 : 相似就是換底,若以矩陣 M 的行向量作為一組基底向量,線性變換 A 參考此基底的變換矩陣即為 B。相似變換是矩陣之間的一種等價關係。 相似變換下的不變性質,若A~B,則 ::: :::info - 兩者的秩相等。rank(A) = rank(B) - 兩者的行列式值相等。det(A) = det(B) - 兩者的跡數相等。tr(A) = tr(B) - 兩者nullity相等。nullity(A) = nullity(B) - 兩者擁有同樣的eigenvalue,儘管相應的eigenvector一般不同。 - 兩者擁有同樣的特徵多項式。Pa(x) = Pb(x) ::: ### 2. 使用相似性質的原因 :::success **不變性質產生的原因有兩個:** 1. 兩個相似的矩陣可以看做是同一個線性變換的「兩面」,即在兩個不同的base下的表現。 2. 映射X -> P^(−1)^XP是從n階方陣射到n階方陣的一個置換同構,因為P是可逆的。 ::: :::warning 因此,在給定了矩陣A後,只要能找到一個與之相似而又足夠「簡單」的「規範形式」B,那麼對A的研究就可以轉化為對更簡單的矩陣B的研究。比如說A被稱為可對角化的話,那麼它與一個對角矩陣相似。 ::: ### 3. 檢查二矩陣是否相似 :::success 若A和B的特徵值集合不同,則A和B不相似。若A和B的特徵值集合相同,考慮下列三種可能情形: ::: :::info 當 A 和 B 都是可對角化時,A 相似於 B。 當 A 和 B 恰有一個矩陣是可對角化,A 和 B 不相似。 當 A 和 B 都不為可對角化時,可以透過解方程式一途來確定二矩陣是否相似。要徹底解決如何檢查矩陣是否相似此問題,必須使用Jordan form。 ::: ## 三、可對角化矩陣 (Diagonalizable Matrix) :::success 一方陣A若存在一可逆矩陣P使得P^(-1)^AP為對角矩陣(P對角化A),則稱為可對角化矩陣。 可對角化的充要條件 : ::: :::info - nxn的矩陣A為可對角化,若且唯若它有n個線性獨立的特徵向量。 P(x)在F中可分解且各個eigenvalue的代數重數 = 幾何重數 代數重數 : eigenvalue之重根個數,稱代數重數,符號記為am(λi)。 幾何重數 : 其所對應之eigenvector的個數,稱幾何重數,符號記為gm(λi)。 am(λi) <= gm(λi),也就是說代數重數為1時幾何重數也必為1,不必驗證是否相等 當am(λi) = gm(λi) 時,該矩陣可以對角化。 ::: :::warning [補記] 以代數重數幾何重數解是否可對角化題目 可對角化的充分條件 : 若nxn矩陣A有n個不同的特徵值,則對應的特徵向量為線性獨立且A為可對角化矩陣。例題: ![](https://i.imgur.com/uZyke6c.png) ![](https://i.imgur.com/LT1t1dc.png) ![](https://i.imgur.com/nm1qTWA.png) ::: ![](https://i.imgur.com/I1i9OJG.png) ## 四、實對稱矩陣與正交對角化 ### 1. 實對稱矩陣 :::success **定義** : 實對稱矩陣是一個方形矩陣,其元素都為實數,且轉置矩陣和自身相等 (即矩陣各個元素都為實數),記做 A = A^T^。 ::: :::danger **實對稱矩陣有以下的性質**: - 實對稱矩陣A的不同特徵值所對應的特徵向量是正交的。 - 實對稱矩陣A的特徵值都是實數,特徵向量都是實向量。 - n階實對稱矩陣A必可對角化。 - 可用正交矩陣對角化。 - K重特徵值必有K個線性無關的特徵向量,或者說必有秩rank(A-λI)=n-k。 ::: ### 2. 對稱矩陣的正交對角化 (orthogonal diagonalization) :::success 令A為nxn的矩陣 :::info 1. 找出A的特徵值並找出每個特徵值的重數 2. 對於每個重數k=1的特徵值,選出一個單位特徵向量 3. 對於每個重數為k>1的特徵值,找出一組有k個線性獨立的特徵向量集。若這個向量集並非單範正交,利用Gram-Schmidt單範正交過程將之單範正交化 4. 由(2)與(3)的結果產生一組有n個特徵向量的單範正交集。利用這些特徵向量來做為矩陣P的行向量 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully