橘
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 交通時空大數據_基礎 > 須預先下載的Modules: > `pip install matplotlib`、`pip install pandas`、`pip install geopandas` ## 整理出需要的data > 若資料集有太多不需要的資訊,可以進行這一步驟整理資料 > 若不整理也可以直接使用的程式碼 * 車輛ID `car_id` * 時間 `_time` * 經度 `lon` * 緯度 `lat` * 速度 `cal_spd` ```python= import os import shutil import pandas as pd # 指定資料夾路徑 input_folder = 'C:\\NCKU\\data_analyze\\NSYU_september\\send' output_folder = 'C:\\NCKU\\data_analyze\\NSYU_september\\new' # 確保輸出資料夾存在,若不存在就建立 os.makedirs(output_folder, exist_ok=True) # 遍歷資料夾中的所有檔案 for filename in os.listdir(input_folder): if filename.endswith('.csv'): input_filepath = os.path.join(input_folder, filename) data = pd.read_csv(input_filepath) selected_data = data[['car_id', '_time', 'lon', 'lat', 'cal_spd']] output_filepath = os.path.join(output_folder, filename) # 將整理後的資料另存為檔案 selected_data.to_csv(output_filepath, index=False) print("finish") ``` --- ## 時間完整性評估 > hourly_data_statistics.py ### 處理時間 * 使用日期格式轉換 ```python data['Hour'] = pd.to_datetime(data['_time']).dt.hour ``` * 使用字串分割 > 日期格式是:2020-09-04 23:53:44 > 索引從0開始,故小時(23)為11(包括)~13(不包括) ```python data['Hour'] = data['_time'].str.slice(11, 13) ``` * 使用apply方法 (須較長的處理時間) > 定義一function,會對dataframe的每列進行操作 ```python def f(r): return r[11:13] data['Hour'] = data['_time'].apply(f).astype(int) ``` > 亦可使用lambda匿名函數 > `axis=1` 表示你要對每一行應用 lambda 函數 ```python data['Hour'] = data.apply(lambda row: row['_time'][11:13], axis=1) ``` * 完整程式碼 > `.astype(int)` 將結果轉換為整數型別 > 字串分割、 ```python= import os import pandas as pd # 指定資料路徑 input_data = 'C:\\NCKU\\data_analyze\\NSYU_september\\new\\merge0509.csv' data = pd.read_csv(input_data) # 處理時間 # 使用日期格式轉換 data['Hour'] = pd.to_datetime(data['_time']).dt.hour # 使用字串分割 data['Hour'] = data['_time'].str.slice(11, 13).astype(int) # 使用apply方法 def f(r): return r[11:13] data['Hour'] = data['_time'].apply(f).astype(int) #lambda data['Hour'] = data.apply(lambda row: row['_time'][11:13], axis=1).astype(int) print(data) ``` --- ### 統計每小時的數據量 > 統計每個小時內有多少唯一的 `'car_id'` (同一台車不重複計算) * 使用 `groupby()` ,按照 `'Hour'` 欄位對資料進行分組 * `reset_index()` 重置索引,使 `'Hour'` 成為一列 * `transpose()`將資料表轉置(可以不用) ```python= Hourcount = data.groupby('Hour')['car_id'].count() Hourcount = Hourcount.rename('count').reset_index() print(Hourcount.transpose()) ``` ![image](https://hackmd.io/_uploads/SJNFfH5Fp.png) ### 繪製圖表 ```python= # 繪製圖表 # 建立圖表:fig = plt.figure(尺寸, dpi=大小) fig = plt.figure(figsize=(8, 4), dpi=100) # 建立子圖ax = fig.add_subplot(111) ax = fig.add_subplot(111) # 111 : nrows x ncols x index(將圖表分割成 1 行 1 列的網格(1x1),並選擇其中的第一個子圖) # plt.plot(x軸, y軸, 樣式) plt.plot(Hourcount['Hour'], Hourcount['count'], 'k-') # 折線 plt.plot(Hourcount['Hour'], Hourcount['count'], 'k.') # 散點 plt.bar(Hourcount['Hour'], Hourcount['count']) # 柱狀 plt.ylabel("Data Volume") plt.xlabel("Hour") # plt.xticks(要放幾個刻度, 刻度的標籤(X 軸上的數字)) plt.xticks(range(24), range(24)) plt.title("Hourly data volume") # plt.ylim(Y軸的下限, Y軸的上限) plt.ylim(0, 20000) plt.show() ``` ![image](https://hackmd.io/_uploads/r1A0_rqFT.png) ### 完整程式碼 ```python= import os import pandas as pd import matplotlib.pyplot as plt # 指定資料路徑 input_data = 'merge0509.csv' data = pd.read_csv(input_data) # 處理時間 data['Hour'] = data['_time'].str.slice(11, 13).astype(int) # 每小時的數據量 Hourcount = data.groupby('Hour')['car_id'].count() Hourcount = Hourcount.rename('count').reset_index() print(Hourcount.transpose()) # 繪製圖表 # 建立圖表:fig = plt.figure(尺寸, dpi=大小) fig = plt.figure(figsize=(8, 4), dpi=100) # 建立子圖ax = fig.add_subplot(111) ax = fig.add_subplot(111) # 111 : nrows x ncols x index(將圖表分割成 1 行 1 列的網格(1x1),並選擇其中的第一個子圖) # plt.plot(x軸, y軸, 樣式) plt.plot(Hourcount['Hour'], Hourcount['count'], 'k-') # 折線 plt.plot(Hourcount['Hour'], Hourcount['count'], 'k.') # 散點 plt.bar(Hourcount['Hour'], Hourcount['count']) # 柱狀 plt.ylabel("Data Volume") plt.xlabel("Hour") # plt.xticks(要放幾個刻度, 刻度的標籤(X 軸上的數字)) plt.xticks(range(24), range(24)) plt.title("Hourly data volume") # plt.ylim(Y軸的下限, Y軸的上限) plt.ylim(0, 20000) plt.show() ``` --- ## 空間完整性評估 ### 建立空間分布柵格圖 > spatial_distribution_grid_map.py > 須預先下載的Modules:`pip install keplergl`、`pip install -U transbigdata` ![image](https://hackmd.io/_uploads/SyGlsc9Fp.png ) ```python= import geopandas as gpd import transbigdata as tbd import pandas as pd import matplotlib.pyplot as plt input_csv = 'merge0509.csv' input_shp = 'shp\\kuohsiung.shp' data = pd.read_csv(input_csv, dtype={'car_id': int, '_time': str, 'lon': float, 'lat': float, 'cal_spd': float}) sz = gpd.read_file(input_shp) sz = sz.to_crs(epsg=4326) #一定要用WGS84 # 篩選剔除研究範圍外之數據 # accuracy為柵格大小,單位為m -> 越小精度越高 accuracy = 500 data = tbd.clean_outofshape(data, sz, col=['lon', 'lat'], accuracy = accuracy) # 定義範圍、柵格參數(需用WGS84) minx, miny, maxx, maxy = sz.total_bounds bound = [minx, miny, maxx, maxy] params = tbd.area_to_params(bound, accuracy = accuracy) print(params) #將GPS資料對應至柵格 data['LonCol'], data['LatCol'] = tbd.GPS_to_grid(data['lon'], data['lat'], params) grid_agg = data.groupby(['LonCol', 'LatCol'])['car_id'].count().reset_index() grid_agg['geometry'] = tbd.grid_to_polygon([grid_agg['LonCol'], grid_agg['LatCol']], params) grid_agg = gpd.GeoDataFrame(grid_agg) fig = plt.figure(1, figsize=(8, 8), dpi=100) ax = fig.add_subplot(111) # tbd.plot_map(plt, bound, zoom = 11, style = 11) 界接地圖 sz.plot(ax = ax, edgecolor = (0,0,0,0), facecolor = (0,0,0,0.1), linewidth = 0.5) cax = plt.axes([0.1, 0.33, 0.02, 0.3]) plt.title('Data count') plt.sca(ax) grid_agg.plot(column = 'car_id', cmap = 'autumn_r', ax=ax, cax = cax, legend=True) tbd.plotscale(ax, bounds = bound, textsize = 10, compasssize = 1, accuracy = 2000, rect = [0.6, 0.03], zorder = 10) plt.axis('off') plt.xlim(bound[0], bound[2]) plt.ylim(bound[1], bound[3]) plt.show() ``` ### 建立空間分布散點圖 > spatial_distribution_scatter_plot.py > 須預先下載的Modules:`pip install seaborn` ![image](https://hackmd.io/_uploads/Bkc8Di5K6.png) ```python= import geopandas as gpd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import matplotlib as mpl import transbigdata as tbd input_csv = 'merge0509.csv' input_shp = 'shp\\kuohsiung.shp' data = pd.read_csv(input_csv, dtype={'car_id': int, '_time': str, 'lon': float, 'lat': float, 'cal_spd': float}) sz = gpd.read_file(input_shp) sz = sz.to_crs(epsg=4326) #经纬度小数点保留三位小数 data = data[['lon','lat']].round(3).copy() # 集計每個小範圍內的數據量 data['count'] = 1 data = data.groupby(['lon', 'lat'])['count'].count().reset_index() # 排序數據,讓數據量小的放在最上面畫,數據大的放在最下面最後畫 data = data.sort_values(by='count') fig = plt.figure(1, (8, 8), dpi=80) ax = plt.subplot(111) plt.sca(ax) # 繪製行政區劃的邊界 minx, miny, maxx, maxy = sz.total_bounds bounds = [minx, miny, maxx, maxy] sz.plot(ax=ax, edgecolor=(0, 0, 0, 0), facecolor=(0, 0, 0, 0.1), linewidths=0.5) # 定義 colorbar pallete_name = "BuPu" colors = sns.color_palette(pallete_name, 3) colors.reverse() cmap = mpl.colors.LinearSegmentedColormap.from_list(pallete_name, colors) vmax = data['count'].quantile(0.99) norm = mpl.colors.Normalize(vmin=0, vmax=vmax) # 繪製散點圖 plt.scatter(data['lon'], data['lat'], s=1, alpha=1, c=data['count'], cmap=cmap, norm=norm) # 添加比例尺和指北針 tbd.plotscale(ax, bounds=bounds, textsize=10, compasssize=1, accuracy=2000, rect=[0.6, 0.03]) plt.axis('off') plt.xlim(bounds[0], bounds[2]) plt.ylim(bounds[1], bounds[3]) # 繪製 colorbar cax = plt.axes([0.15, 0.33, 0.02, 0.3]) plt.colorbar(cax=cax) plt.title('count') plt.show() ``` --- ### 建立空間分布熱力圖 > spatial_distribution_heatmap.py ![image](https://hackmd.io/_uploads/r1C5-nqFT.png) ```python= import geopandas as gpd import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import transbigdata as tbd import numpy as np # 指定文件路径 input_csv = 'merge0509.csv' input_shp = 'shp\\kuohsiung.shp' data = pd.read_csv(input_csv, dtype={'car_id': int, '_time': str, 'lon': float, 'lat': float, 'cal_spd': float}) sz = gpd.read_file(input_shp) sz = sz.to_crs(epsg=4326) # 經緯度小數點保留三位小數 data = data[['lon','lat']].round(3).copy() # 集計每個小範圍內的數據量 data['count'] = 1 data = data.groupby(['lon', 'lat'])['count'].count().reset_index() data = data.sort_values(by='count') # 轉換數據透視表,變成矩陣格式 d = data.pivot(columns = 'lon',index = 'lat',values = 'count').fillna(0) # 取對數,縮小最大最小值之間的差距 z = np.log(d.values) x = d.columns y = d.index levels = np.linspace(0, z.max(), 25) fig = plt.figure(1, (8, 8), dpi=80) ax = plt.subplot(111) plt.sca(ax) fig.tight_layout(rect=(0.05, 0.1, 1, 0.9)) # 調整整體空白 # 繪製行政區劃的邊界 minx, miny, maxx, maxy = sz.total_bounds bounds = [minx, miny, maxx, maxy] sz.plot(ax=ax, edgecolor=(0, 0, 0, 0), facecolor=(0, 0, 0, 0.1), linewidths=0.5) # 定義colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list('cmap', ['#9DCC42', '#FFFE03', '#F7941D', '#E9420E', '#FF0000'], 256) # 繪製等高線圖 plt.contourf(x, y, z, levels=levels, cmap=cmap, origin='lower') # 添加比例尺和指北針 tbd.plotscale(ax, bounds=bounds, textsize=10, compasssize=1, accuracy=2000, rect=[0.6, 0.03]) plt.axis('off') plt.xlim(bounds[0], bounds[2]) plt.ylim(bounds[1], bounds[3]) # 繪製colorbar cax = plt.axes([0.13, 0.32, 0.02, 0.3]) cbar = plt.colorbar(cax=cax) # cbar = plt.colorbar(cax=cax, ticks=np.linspace(z.min(), z.max(), 5), format="%1.1f") # 調整colorbar的顯示標記位置 val = [1, 10, 100, 1000] pos = np.log(np.array(val)) # 在什麼位置顯示標記 cbar.set_ticks(pos) # 標記顯示什麼內容 cbar.set_ticklabels(val) plt.title('Count') plt.show() ``` --- ### 建立空間核密度 > spatial_kernel_density.py ![image](https://hackmd.io/_uploads/Sk3WVhqta.png) ```python= import geopandas as gpd import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import transbigdata as tbd import seaborn as sns import numpy as np input_csv = 'merge0509.csv' input_shp = 'shp\\kuohsiung.shp' data = pd.read_csv(input_csv, dtype={'car_id': int, '_time': str, 'lon': float, 'lat': float, 'cal_spd': float}) sz = gpd.read_file(input_shp) sz = sz.to_crs(epsg=4326) data = data[['lon','lat']].round(3).copy() data['count'] = 1 data = data.groupby(['lon', 'lat'])['count'].count().reset_index() # 建立畫布 fig = plt.figure(1, (10, 10), dpi=60) ax = plt.subplot(111) plt.sca(ax) fig.tight_layout(rect=(0.05, 0.1, 1, 0.9)) # 調整整體空白 # 繪製行政區劃的邊界 minx, miny, maxx, maxy = sz.total_bounds bounds = [minx, miny, maxx, maxy] sz.plot(ax=ax, edgecolor=(0, 0, 0, 0), facecolor=(0, 0, 0, 0.1), linewidths=0.5) # 色彩映射的數據 cmap = mpl.colors.LinearSegmentedColormap.from_list('cmap', ['#9DCC42', '#FFFE03', '#F7941D', '#E9420E', '#FF0000'], 256) # 設定顯示範圍 plt.axis('off') plt.xlim(bounds[0], bounds[2]) plt.ylim(bounds[1], bounds[3]) # 定義 colorbar 位置 cax = plt.axes([0.13, 0.32, 0.02, 0.3]) # 繪製二維核密度圖 sns.kdeplot(x='lon', y='lat', # 指定x與y座標所在的欄位 data=data[data['count'] > 1], # 來源資料,篩選去除太小的值 weights='count', # 設定權重所在欄位 alpha=0.8, # 透明度 gridsize=120, # 繪圖精細度,越高越慢 bw=0.03, # 高斯核大小(經緯度),越小越精細 cmap=cmap, # 定義色彩映射 ax=ax, # 指定繪圖位置 shade=True, # 是否填充等高線間的顏色 shade_lowest=False, # 最底層不顯示顏色 cbar=True, # 顯示 colorbar cbar_ax=cax # 指定 colorbar 位置 ) # 顯示圖形 plt.show() ``` --- ## Seaborn > Seaborn是基於matplotlib的Python視覺化函式庫 * sns.kdeplot() https://seaborn.pydata.org/generated/seaborn.kdeplot.html * 來ChatGPT的介紹與作者的補充:) `sns.kdeplot()` 是 seaborn 庫中的一個函數,用於繪製單變量或雙變量的核密度估計(Kernel Density Estimation)。核密度估計是一種用來估計概率密度函數的非參數方法,它會通過對數據進行平滑處理來估計數據的分佈情況。 `sns.kdeplot()` 可以繪製單變量數據的核密度估計曲線,也可以繪製雙變量數據的核密度等值線圖或二維核密度圖。它的用法如下: ```python sns.kdeplot(data, data2=None, shade=False, vertical=False, kernel='gau', bw='scott', gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None, **kwargs) ``` 主要參數包括: - `data`: 要繪製的數據,可以是一維或二維數組。 - `data2`: 用於繪製雙變量核密度估計的第二組數據(可選)。 - `shade`: 是否給密度曲線下方區域填充顏色,默認為 False。 - `vertical`: 是否將密度估計曲線繪製為垂直方向,默認為 False。 - `kernel`: 用於估計密度的核函數,可選值包括 'gau'(高斯核)、'cos'(餘弦核)、'biw'(雙重三角核)等,默認為 'gau'。 - ==即為kernel shape== - `'biw'` 等同GIS的 Quartic - `'tri'` 等同GIS的 Triangular - `'epa'` 等同GIS的 Epanechnikov - `'uni'` 等同GIS的 Uniform - `'triw'` 等同GIS的 Triweight - `bw`: 控制核密度估計帶寬的方法,可選值包括 'scott'、'silverman' 或一個標量,默認為 'scott'。 - ==即為Radius, 單位則依輸入的資料而定== - 因這邊輸入的值是經緯度,所以這邊的單位都是度,如需使用公尺等單位,可能須再自行轉換 - `gridsize`: 用於計算核密度的網格大小,默認為 100。 - `cut`: 在繪製雙變量核密度估計時,用於裁剪數據的標準差數,默認為 3。 - `clip`: 用於裁剪核密度估計的範圍。 - `legend`: 是否顯示圖例,默認為 True。 - `cumulative`: 是否繪製累積密度圖,默認為 False。 - `shade_lowest`: 是否給最低密度區域填充顏色,默認為 True。 - `cbar`: 是否在繪製雙變量核密度圖時繪製顏色條,默認為 False。 - `cbar_ax`: 顏色條的 Axes 對象。 - `cbar_kws`: 顏色條的其他參數。 - `ax`: 繪製圖形的 Axes 對象,如果沒有提供,則使用當前 Axes。 `sns.kdeplot()` 可以幫助你快速了解數據的分佈情況,並且支持許多參數來定制化你的圖形。 ---

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully