Damiano Oldoni
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# INBO CODING CLUB 26 June 2025 Welcome! ## Share your code snippet If you want to share your code snippet, copy paste your snippet within a section of three backticks (```): As an **example**: ``` library(tidyverse) ``` (*you can copy paste this example and add your code further down*) ## Yellow sticky notes No yellow sticky notes online. Put your name + " | " and add a "*" each time you solve a challenge (see below). ## Participants Name | Challenges --- | --- Damiano Oldoni | *** Emma Cartuyvels| *** Pieter Huybrechts | \**** Jorre Vannieuwenhuyze | Larissa Bonifacio | Falk Mielke | Lien Reyserhove | Rhea Maesele | Sebastiaan Verbesselt | * ## References --- > *Falk:* I once introduced the basic concept of functions [here](https://mielke.ws/python_cursus/#/page/functions). > (Content-wise same as Damiano's introduction, with a different target audience, metaphor, and programming language.) --- style reference on the (non-)use of `return`: https://adv-r.hadley.nz/functions.html#implicit-versus-explicit-returns --- ## Challenge 0 ### Jorre ```r make_bread <- function(grains,yeast,water,salt) { return(grains + yeast + water + salt) } make_focaccia <- function(grains,yeast,water,salt) { return(grains + 1.5 * yeast + 0.7 * water + 2 * salt) } make_doughs <- function(grains, yeast, water, salt) { # Code to generate `bread` and `focaccia` bread <- make_bread(grains,yeast,water,salt) focaccia <- make_focaccia(grains,yeast,water,salt) # Combine bread and focaccia as a list of doughs doughs <- list(bread = bread, focaccia = focaccia) return(doughs) } ``` ### Falk *(for Python aficionados)* ```python # translation: def make_doughs(grains: float, yeast: float, water: float, salt: float): # mix ingredients in a certain ration to bake bread. bread = grains + yeast + water + salt focaccia = grains + 1.5 * yeast + 0.7 * water + 2 * salt return({"bread": bread, "focaccia": focaccia}) # let's make this more atomic! all_ingredients = ["grains", "yeast", "water", "salt"] ingredient_weights = { "bread": {ingredient: 1.0 for ingredient in all_ingredients}, "focaccia": {"grains": 1.0, "yeast": 1.5, "water": 0.7, "salt": 2.0} } def make_dough(ingredients: dict, dough: str = "bread"): # choose a dough and prepare it from ingredients mixture = [ \ ingredients.get(ingredient, 0.0) * ingredient_weights[dough][ingredient] \ for ingredient in ingredient_weights[dough].keys()] return(sum(mixture)) def make_bread(**kwargs): # exploiting Python "signature wildcards": e.g. https://codefather.tech/blog/python-args-kwargs return make_dough(ingredients = kwargs, dough = "bread") # example: make_bread(grains = 20, yeast = 1, water = 2, salt = 3) ``` ### Larissa ```r library(tidyverse) make_bread <- function(grains, yeast, water, salt) { #Code to generate bread bread <- grains + yeast + water + salt return(bread) } make_focaccia <- function(grains, yeast, water, salt){ focaccia <- grains + 1.5 * yeast + 0.7 * water + 2 * salt return(focaccia) } make_doughs <- function(bread, focaccia){ doughs <- list(bread, focaccia) return(doughs) } x = make_bread(1, 2, 3, 4) y = make_focaccia(5, 6, 7, 8) make_doughs(x, y) ``` ### Sebastiaan ```r library(tidyverse) make_bread <- function(grains, yeast, water, salt) { #Code to generate bread bread <- grains + yeast + water + salt return(bread) } make_focaccia <- function(grains, yeast, water, salt){ focaccia <- grains + 1.5 * yeast + 0.7 * water + 2 * salt return(focaccia) } make_doughs <- function(bread, focaccia){ doughs <- list(bread, focaccia) return(doughs) } x = make_bread(1, 2, 3, 4) y = make_focaccia(5, 6, 7, 8) make_doughs(x, y) ``` ## Challenge 1 ### Emma's solution ```r read_moth <- function(year){ file_name <- paste0("20250626_moth_obs_", year, ".csv") path <- file.path("data", "20250626", file_name) obs <- readr::read_csv(path) obs <- obs %>% dplyr::mutate(year = lubridate::year(.data$eventDate)) return(obs) } get_effort <- function(df){ require(dplyr) effort_year <- df %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) return(effort_year) } get_abundance <- function(df){ require(dplyr) abundance_year <- df %>% dplyr::group_by(year, locationID, species) %>% dplyr::summarise( abundance = sum(individualCount), .groups = "drop" ) return(abundance_year) } get_richness <- function(df){ require(dplyr) richness_year <- df %>% dplyr::group_by(year, locationID) %>% dplyr::summarise( richness = n_distinct(species), .groups = "drop" ) return(richness_year) } ``` ### Pieter's solution ```r #' Read Moth Observations #' #' This function reads moth observation data from a specified file path and #' calculates yearly effort, abundance, and richness of moth species. #' #' An extra column year is added based on the eventDate. #' #' @param filepath Path to the CSV file containing moth observations. #' @param year Year for which the data is to be processed. Default is 2022. #' #' @return A data frame containing yearly species richness per location. #' #' @examples #' read_moth(year = 2022) #' read_moth(year = 2023) #' read_moth <- function(filepath, year = 2022) { selected_year <- year # Read from file ---------------------------------------------------------- filepath <- file.path("data", "20250626", sprintf("20250626_moth_obs_%s.csv", selected_year)) df <- readr::read_delim(filepath, show_col_types = FALSE, progress = FALSE) # (optional) Add year column ---------------------------------------------- if (!"year" %in% colnames(df)) { # Add `year` column based on `eventDate` df <- dplyr::mutate(df, year = lubridate::year(.data$eventDate)) } # Filter and return df ---------------------------------------------------- obs <- dplyr::filter(df, .data$year %in% selected_year) if(!all(selected_year %in% df$year)){ missing_years <- selected_year[!selected_year %in% df$year] cli::cli_warn( "No observations found for {length(missing_years)} year{?s}: {.field {missing_years}} in {.file {filepath}}." ) } return(obs) } #' Calculate the total yearly effort #' #' Calculate the total yearly effort for each `locationID` as the total number of #' trap days over all deploymentIDs linked to each `locationID` #' #' @param df A data frame containing moth observations. #' #' @return A data frame with total yearly effort per `locationID` and #' `deploymentID`. #' #' @examples #' read_moth(year = 2023) |> #' get_effort() get_effort <- function(df) { # Calculate effort ---- # Calculate the total yearly effort for each `locationID` as the total number # of trap days over all deploymentIDs linked to each `locationID` effort_year <- df %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) # Return effort df ---- return(effort_year) } #' Calculate yearly abundance #' #' Calculate yearly abundance as the sum of individual counts per species and #' `locationID`. #' #' @param df A data frame containing moth observations. #' #' @return A data frame with yearly abundance per `locationID` and `species`. #' #' @examples #' read_moth(year = 2022) |> #' get_abundance() get_abundance <- function(df) { # Calculate yearly abundance as the sum of individual counts per species and # `locationID` dplyr::summarise(df, .by = dplyr::all_of(c("year", "locationID", "species")), abundance = sum(individualCount) ) } #' Calculate species richness #' #' Calculate species richness per `locationID` as the number of unique species #' observed in each year. #' #' @param df A data frame containing moth observations. #' #' @return A data frame with species richness per `locationID` and `year`. #' #' @examples #' read_moth(year = 2022:2023) |> #' get_richness() get_richness <- function(df) { # Calculate species richness per `locationID` as number of unique species # observed dplyr::summarise(df, richness = dplyr::n_distinct(species), .by = dplyr::all_of(c("year", "locationID")) ) } ``` ### Jorre `20250626_functions.R`: ```r # Write a function called read_moth() that reads the moth data from a file and # returns a data frame. The function should have an argument: year (number), # which is the year of the data to read. Tip: sprintf() can be useful, e.g. # sprintf("Damiano is born in %d.", 1982). read_moth <- function(path,year) { year |> sprintf(fmt="20250626_moth_obs_%i.csv") %>% file.path(path, .) |> readr::read_csv() } # Edna adds a year column immediately in her workflow. So, please add this small # step in read_moth. read_moth <- function(path,year) { year |> sprintf(fmt="20250626_moth_obs_%i.csv") %>% file.path(path, .) |> readr::read_csv() |> dplyr::mutate(year = lubridate::year(.data$eventDate)) } # Write three functions: get_effort(), get_abundance() and get_richness() to # calculate respectively the yearly effort, abundance and richness. The function # must have an argument: df (data frame), which is the data to use. The function # should return a data frame with the effort, abundance, or richness. get_effort <- function(df) { df %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) } get_abundance <- function(df) { df %>% dplyr::group_by(year, locationID, species) %>% dplyr::summarise( abundance = sum(individualCount), .groups = "drop" ) } get_richness <- function(df) { df %>% dplyr::group_by(year, locationID) %>% dplyr::summarise( richness = n_distinct(species), .groups = "drop" ) } ``` `20250626_workflow.R`: ```r obs <- read_moth("data/20250626",2022) effort_year <- get_effort(obs) abundance_year <- get_abundance(obs) richness_year <- get_richness(obs) ``` ### Sebastiaan `20250626_workflow.R`: ```r library(tidyverse) source("./src/20250626/20250626_functions.R") # CHALLENGE 1 #### obs <- read_moth(2022) get_effort(obs) get_abundance(obs) get_richness(obs) ``` `20250626_functions.R`: ```r library(tidyverse) library(dplyr) # CHALLENGE 1 #### read_moth <- function(year){ file_name_complete <- paste0("20250626_moth_obs_",year,".csv") path <- file.path("data", "20250626", file_name_complete) obs <- readr::read_csv(path) obs <- obs %>% dplyr::mutate(year = lubridate::year(.data$eventDate)) return(obs) } get_effort <- function(data){ effort_year <- data %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) return(effort_year) } get_abundance <- function(data){ abundance_year <- data %>% dplyr::group_by(year, locationID, species) %>% dplyr::summarise( abundance = sum(individualCount), .groups = "drop" ) return(abundance_year) } get_richness <- function(data){ richness_year <- data %>% dplyr::group_by(year, locationID) %>% dplyr::summarise( richness = n_distinct(species), .groups = "drop" ) return(richness_year) } ``` ### Falk *(Python)* #### part 1 and 2 ```python import pathlib as pl import pandas as pd def read_moth(file_name, base_path = pl.Path(".")/"data", **kwargs): # read a moth data file # combine the file path file_path = pl.Path(base_path)/file_name # read observations obs = pd.read_csv(file_path, **kwargs) # add a year column (sould better use a date data type instead.) obs["year"] = [ev_date[:4] for ev_date in obs["eventDate"].values] # give back the observation data return (obs) # we can also create a function which reads by "year" argument. def read_moth_year(year, **kwargs): file_name = f"20250626_moth_obs_{year}.csv" # https://realpython.com/python-string-formatting return(read_moth(file_name, **kwargs)) # example: obs = read_moth_year(2022, sep = ",") print(obs.sample(5)) ``` #### part 3 ```python # functions are "first class citizens" in R and python: # you can make lists of them, pass them to other functions, etc. # https://en.wikipedia.org/wiki/First-class_citizen calculator_functions = { \ "effort": lambda data: data.groupby(["year", "locationID", "deploymentID"]).eventDate.nunique().groupby(level = [0, 1]).agg("sum").reset_index().rename(columns = {"eventDate": "effort"}), "abundance": lambda data: data.groupby(["year", "locationID", "species"]).individualCount.sum().reset_index().rename(columns = {"individualCount": "abundance"}), "richness": lambda data: data.groupby(["year", "locationID"]).species.nunique().reset_index().rename(columns = {"species": "richness"}) } # (these one-line functions might be cumbersome, but you get the idea.) # (in Pyhton, `lambda args: [...]` is a shorthand for `def unnamed_function(args): [...]`.) def calculate(measure, data): return(calculator_functions[measure](data)) # example: print(calculate("abundance", obs)) ``` ## Challenge 2 ### Emma's solution ```r get_effort <- function(df, breaks = c(-Inf, 9, 19, Inf), labels = c("low", "medium", "high")){ require(dplyr) effort_year <- df %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) %>% dplyr::mutate(categoric_effort = cut(effort, breaks = breaks, labels = labels ) ) return(effort_year) } get_abundance <- function(df, breaks = c(-Inf, 9, 49, Inf), labels = c("low", "medium", "high")){ require(dplyr) abundance_year <- df %>% dplyr::group_by(year, locationID, species) %>% dplyr::summarise( abundance = sum(individualCount), .groups = "drop" ) %>% dplyr::mutate(categoric_abundance = cut(abundance, breaks = breaks, labels = labels ) ) return(abundance_year) } get_richness <- function(df, breaks = c(-Inf, 5, 10, Inf), labels = c("low", "medium", "high")){ require(dplyr) richness_year <- df %>% dplyr::group_by(year, locationID) %>% dplyr::summarise( richness = n_distinct(species), .groups = "drop" ) %>% dplyr::mutate(categories_richness = cut(richness, breaks = breaks, labels = labels ) ) return(richness_year) } # Challenge 2 plot_abundance <- function(df, species, lng = "EN"){ plot_abundance_year_cossus_cossus <- df %>% dplyr::filter(species == species) %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + if(lng == "EN"){ labs(title = paste0("Abundance of ", species, " by Location"), x = "Location", y = "Abundance") } else if (lng == "NL"){ labs(title = paste0("Abundantie van ", species, " per Locatie"), x = "Locatie", y = "Abundantie") } else { stop("Unknown language") } return(plot_abundance_year_cossus_cossus) } ``` ### Sebastiaan's solution `20250626_workflow.R`: ```r get_effort(data = obs) get_abundance(data = obs) get_abundance(data = obs) get_richness(data = obs) # Plot abundance of Cossus cossus by location language <- "Dutch" plot_abundance(obs,language) language <- "English" plot_abundance(obs,language) language <- "Spanish" plot_abundance(obs,language) ``` `20250626_functions.R`: ```r get_effort <- function(data, breaks = c(-Inf, 9, 19, Inf), labels = c("low", "medium", "high")){ effort_year <- data %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) effort_year <- effort_year %>% dplyr::mutate(categoric_effort = cut(effort, breaks, labels ) ) return(effort_year) } get_abundance <- function(data,breaks = c(-Inf, 9, 49, Inf), labels = c("low", "medium", "high")){ abundance_year <- data %>% dplyr::group_by(year, locationID, species) %>% dplyr::summarise( abundance = sum(individualCount), .groups = "drop" ) abundance_year <- abundance_year %>% dplyr::mutate(categoric_abundance = cut(abundance, breaks , labels ) ) return(abundance_year) } get_richness <- function(data, breaks = c(-Inf, 5, 10, Inf), labels = c("low", "medium", "high")){ richness_year <- data %>% dplyr::group_by(year, locationID) %>% dplyr::summarise( richness = n_distinct(species), .groups = "drop" ) richness_year <- richness_year %>% dplyr::mutate(categories_richness = cut(richness, breaks ), labels ) return(richness_year) } plot_abundance <- function(data,language){ abundance_year <- get_abundance(data) if (language == "English"){ plot_abundance_year_cossus_cossus <- abundance_year %>% dplyr::filter(species == "Cossus cossus") %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + labs(title = "Abundance of Cossus cossus by Location", x = "Location", y = "Abundance") return(plot_abundance_year_cossus_cossus) } else if (language == "Dutch"){ plot_abundance_year_cossus_cossus_nl <- abundance_year %>% dplyr::filter(species == "Cossus cossus") %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + labs(title = "Abundantie van Cossus cossus per Locatie", x = "Locatie", y = "Abundantie") return(plot_abundance_year_cossus_cossus_nl) } else { print("plot in this language is not available") } } ``` ### Pieter's solution ```r #' Calculate the total yearly effort #' #' Calculate the total yearly effort for each `locationID` as the total number of #' trap days over all deploymentIDs linked to each `locationID` #' #' @param df A data frame containing moth observations. #' #' @return A data frame with total yearly effort per `locationID` and #' `deploymentID`. #' #' @examples #' read_moth(year = 2023) |> #' get_effort() get_effort <- function(df, breaks = c(-Inf, 9, 19, Inf), labels = c("low", "medium", "high")) { # Calculate effort ---- # Calculate the total yearly effort for each `locationID` as the total number # of trap days over all deploymentIDs linked to each `locationID` effort_year <- df %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) %>% ## Add breaks, labels ---- dplyr::mutate(categoric_effort = cut(effort, breaks = c(-Inf, 9, 19, Inf), labels = c("low", "medium", "high") )) # Return effort df ---- return(effort_year) } #' Calculate yearly abundance #' #' Calculate yearly abundance as the sum of individual counts per species and #' `locationID`. #' #' @param df A data frame containing moth observations. #' #' @return A data frame with yearly abundance per `locationID` and `species`. #' #' @examples #' read_moth(year = 2022) |> #' get_abundance() get_abundance <- function(df, breaks = c(-Inf, 9, 49, Inf), labels = c("low", "medium", "high")) { # Calculate yearly abundance as the sum of individual counts per species and # `locationID` dplyr::summarise(df, .by = dplyr::all_of(c("year", "locationID", "species")), abundance = sum(individualCount) ) %>% dplyr::mutate(categoric_abundance = cut(abundance, breaks = c(-Inf, 9, 49, Inf), labels = c("low", "medium", "high") )) } #' Calculate species richness #' #' Calculate species richness per `locationID` as the number of unique species #' observed in each year. #' #' @param df A data frame containing moth observations. #' #' @return A data frame with species richness per `locationID` and `year`. #' #' @examples #' read_moth(year = 2022:2023) |> #' get_richness() get_richness <- function(df, breaks = c(-Inf, 5, 10, Inf), labels = c("low", "medium", "high")) { # Calculate species richness per `locationID` as number of unique species # observed dplyr::summarise(df, richness = dplyr::n_distinct(species), .by = dplyr::all_of(c("year", "locationID")) ) %>% dplyr::mutate(categories_richness = cut(richness, breaks = c(-Inf, 5, 10, Inf), labels = c("low", "medium", "high") )) } #' Plot Abundance of Cossus cossus #' #' @param df #' @param species A character string specifying the species to plot. Default is #' "Cossus cossus". #' @param language A character string specifying the language for the plot. #' #' @return A ggplot object showing the abundance of the specified species by #' location. #' #' @examples #' read_moth(year = 2022) |> #' get_abundance() |> #' plot_abundance(species = "Cossus cossus", language = "english") #' #' read_moth(year = 2023) |> #' get_abundance() |> #' plot_abundance(species = "Chrysoteuchia culmella", language = "dutch") plot_abundance <- function(df, species = "Cossus cossus", language = c("english", "dutch")) { selected_species <- species # Plot abundance of Cossus cossus by location ----------------------------- plot_abundance_year_cossus_cossus <- df %>% dplyr::filter(species == selected_species) %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + labs(title = glue::glue("Abundance of {selected_species} by Location"), x = "Location", y = "Abundance") ## Same plot with text in Dutch ---- plot_abundance_year_cossus_cossus_nl <- df %>% dplyr::filter(species == selected_species) %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + labs(title = glue::glue("Abundantie van {selected_species} per Locatie"), x = "Locatie", y = "Abundantie") # Return the requested plot ----------------------------------------------- switch(rlang::arg_match(language), english = plot_abundance_year_cossus_cossus, dutch = plot_abundance_year_cossus_cossus_nl) } ``` ### Jorre `20250626_functions.R`: ```r # Improve the functions get_effort(), get_abundance() and get_richness() by # adding two arguments, breaks (numeric vector) and labels (character vector). # Use the values provided by Edna as default values. The improved functions will # return a data frame with a column more than the previous functions. This # column is respectively called categoric_effort, categoric_abundance and # categoric_richness. get_effort <- function( df, breaks = c(-Inf, 9, 19, Inf), labels = c("low", "medium", "high") ) { df %>% dplyr::group_by(year, locationID, deploymentID) %>% dplyr::summarise( trap_nights = dplyr::n_distinct(eventDate), .groups = "drop_last" ) %>% dplyr::summarise( effort = sum(trap_nights), .groups = "drop" ) |> dplyr::mutate( categoric_effort = cut( effort, breaks = breaks, labels = labels ) ) } get_abundance <- function( df, breaks = c(-Inf, 9, 49, Inf), labels = c("low", "medium", "high") ) { df %>% dplyr::group_by(year, locationID, species) %>% dplyr::summarise( abundance = sum(individualCount), .groups = "drop" ) %>% dplyr::mutate( categoric_abundance = cut( abundance, breaks = breaks, labels = labels ) ) } get_richness <- function( df, breaks = c(-Inf, 5, 10, Inf), labels = c("low", "medium", "high") ) { df %>% dplyr::group_by(year, locationID) %>% dplyr::summarise( richness = n_distinct(species), .groups = "drop" ) %>% dplyr::mutate( categories_richness = cut( richness, breaks = breaks, labels = labels ) ) } # Write a function called plot_abundance() with an argument called df with a # data frame containing abundance data (see output of get_abundance()) and an # argument called species (character). The function returns a bar plot of the # abundance with the provided species in the title. plot_abundance <- function(df,thespecies) { df %>% dplyr::filter(species == thespecies) %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + labs(title = "Abundance of Cossus cossus by Location", x = "Location", y = "Abundance") } # Edna must create the same plots with title and axis labels in Dutch for a # workshop with citizen scientists. Can you improve plot_abundance() to handle # it? You can use English title and labels as default values. plot_abundance <- function( df, thespecies, thetitle = "Abundance of Cossus cossus by Location", xaxis_title = "Location", yaxis_title = "Abundance" ) { df %>% dplyr::filter(species == thespecies) %>% ggplot2::ggplot( ggplot2::aes(x = locationID, y = abundance, fill = categoric_abundance)) + geom_col() + labs(title = thetitle, x = xaxis_title, y = yaxis_title) } ``` `20250626_workflow.R`: ```r effort_year <- get_effort(obs) abundance_year <- get_abundance(obs) richness_year <- get_richness(obs) plot_abundance( abundance_year, "Cossus cossus", thetitle = "Abundantie van Cossus cossus per Locatie", xaxis_title = "Locatie", yaxis_title = "Abundantie" ) ``` ### Falk *(Python)* *(only part 1)* ```python # ... in addition to the above: import numpy as np # defaults which vary by measure default_breaks = { "effort": [-np.inf, 9, 19, np.inf], "abundance": [-np.inf, 9, 49, np.inf], "richness": [-np.inf, 5, 10, np.inf] } def categorize(calculation: pd.DataFrame, measure: str = None, breaks: list = None, labels: list = ["low", "medium", "high"]): # categorize the outcome of a calculation # if no column is provided explicitly, use the last one if measure is None: measure = calculation.columns[-1] # breaks default to the values from the dict above if breaks is None: breaks = default_breaks[measure] # `labels` have their default set in the function signature. labels = labels[:len(breaks)-1] # lots of safety checks are omitted: # - does the length of labels fit the breaks? # - is the measure really among the columns? # - are breaks well-defined? (numeric, increasing, ...) # but on the other hand, this keeps the function short and instructive. # calculation of categories calculation[f"categoric_{measure}"] = pd.cut(calculation[measure], bins = breaks, labels = labels) return(calculation) # example: categorize(calculate("richness", obs)) ``` ## Challenge 3 ### Emma's solution ```r plot_effort <- function(df, lng = "EN"){ plot_effort_year <- ggplot(df, aes(x = locationID, y = effort, fill = categoric_effort)) + geom_col() + if(lng == "NL"){ labs(title = "Inspanning per Locatie", x = "Locatie", y = "Inspanning") } else if (lng == "EN"){ labs(title = "Effort by Location", x = "Location", y = "Effort") } else { stop("Unknown language") } return(plot_effort_year) } plot_richness <- function(df, lng = "EN"){ plot_richness_year <- ggplot(df, aes(x = locationID, y = richness, fill = categories_richness)) + geom_col() + if(lng == "NL"){ labs(title = "Soortenrijkdom per Locatie", x = "Locatie", y = "Soortenrijkdom") } else if (lng == "EN"){ labs(title = "Species Richness by Location", x = "Location", y = "Species Richness") } else { stop("Unknown language") } return(plot_richness_year) } get_indicator <- function(year, breaks_effort = c(-Inf, 9, 19, Inf), labels_effort = c("low", "medium", "high"), breaks_abundance = c(-Inf, 9, 49, Inf), labels_abundance = c("low", "medium", "high"), breaks_richness = c(-Inf, 5, 10, Inf), labels_richness = c("low", "medium", "high")){ assertthat::assert_that(is.numeric(year)) df <- read_moth(year) effort <- get_effort(df, breaks = breaks_effort, labels = labels_effort) abundance <- get_abundance(df, breaks = breaks_abundance, labels = labels_abundance) richness <- get_richness(df, breaks = breaks_richness, labels = labels_richness) return(list(effort = effort, abundance = abundance, richness = richness)) } ``` ### Pieter's solution ```r #' Plot Effort by Location #' #' @param df A data frame containing effort data from `get_effort`. #' @param language A character string specifying the language for the plot. Options #' are "english" and "dutch". Default is "english". #' #' @return A ggplot object showing effort by location. #' #' @examples #' read_moth(2022) |> #' get_effort() |> #' plot_effort(language = "dutch") plot_effort <- function(df, language = c("english", "dutch")) { labels_in_language <- switch(rlang::arg_match(language), english = list( title = "Effort by Location", x = "Location", y = "Effort" ), dutch = list( title = "Effort per Locatie", x = "Locatie", y = "Effort" ) ) plot_effort_year <- ggplot( df, aes( x = locationID, y = effort, fill = categoric_effort ) ) + geom_col() + do.call(labs, labels_in_language) return(plot_effort_year) } #' Plot Species Richness #' #' @param df A data frame containing species richness data from `get_richness`. #' @param language A character string specifying the language for the plot. Options #' are "english" and "dutch". Default is "english". #' #' @return A ggplot object showing species richness by location. #' #' @examples #' read_moth(2022) |> #' get_richness() |> #' plot_richness(language = "english") #' #' read_moth(2023) |> #' get_richness() |> #' plot_richness(language = "dutch") plot_richness <- function(df, language = c("english", "dutch")) { labels_in_language <- switch(rlang::arg_match(language), english = list( title = "Species Richness by Location", x = "Location", y = "Species Richness" ), dutch = list( title = "Soortenrijkdom per Locatie", x = "Locatie", y = "Soortenrijkdom" ) ) plot_richness_year <- ggplot( df, aes( x = locationID, y = richness, fill = categories_richness ) ) + geom_col() + do.call(labs, labels_in_language) plot_richness_year } #' Get Indicators #' #' This function retrieves indicators for moth observations, including effort, #' abundance, and richness, based on specified breaks and labels for each #' indicator. #' #' @param year Year for which the indicators are to be calculated. Default is #' 2022. #' @param richness_breaks Breaks for categorizing species richness. #' @param richness_labels Labels for categorizing species richness. #' @param abundance_breaks Breaks for categorizing abundance. #' @param abundance_labels Labels for categorizing abundance. #' @param effort_breaks Breaks for categorizing effort. #' @param effort_labels Labels for categorizing effort. #' #' @return #' #' @examples #' get_indicators(year = 2022) get_indicators <- function(year = 2022, richness_breaks = c(-Inf, 5, 10, Inf), richness_labels = c("low", "medium", "high"), abundance_breaks = c(-Inf, 9, 49, Inf), abundance_labels = c("low", "medium", "high"), effort_breaks = c(-Inf, 9, 19, Inf), effort_labels = c("low", "medium", "high")) { obs <- read_moth(year) list( effort = get_effort(obs, breaks = effort_breaks, labels = effort_labels), abundance = get_abundance(obs, breaks = abundance_breaks, labels = abundance_labels), richness = get_richness(obs, breaks = richness_breaks, labels = richness_labels) ) } ``` ### Jorre `20250626_functions.R`: ```r # Write two functions called plot_effort() and plot_richness() to return a bar # plot of effort and richness, respectively. These functions must allow Edna to # create plots with title and axis labels in Dutch as well. Again, English texts # are the default values. plot_effort <- function( df, thetitle = "Effort by Location", xaxis_title = "Location", yaxis_title = "Effort" ) { ggplot( df, aes(x = locationID, y = effort, fill = categoric_effort) ) + geom_col() + labs(title = thetitle, x = xaxis_title, y = yaxis_title ) } plot_richness <- function( df, thetitle = "Species Richness by Location", xaxis_title = "Location", yaxis_title = "Species Richness" ) { ggplot( df, aes(x = locationID, y = richness, fill = categories_richness) ) + geom_col() + labs(title = thetitle, x = xaxis_title, y = yaxis_title ) } # Automatise the entire workflow (without the plotting step) by creating a # macrofunction called get_indicators() with argument year (numeric) to read the # right csv file. This function must return a list of 3 data frames named # effort, abundance and richness. And do not forget to allow Edna to set custom # breaks and labels for the categorical effort/abundance/richness. get_indicators <- function( path, year, effort_breaks = c(-Inf, 9, 19, Inf), effort_labels = c("low", "medium", "high"), abundance_breaks = c(-Inf, 9, 49, Inf), abundance_labels = c("low", "medium", "high"), richness_breaks = c(-Inf, 5, 10, Inf), richness_labels = c("low", "medium", "high") ) { obs <- read_moth(path,year) list( effort_year = get_effort(obs,breaks=effort_breaks,labels=effort_labels), abundance_year = get_abundance(obs,breaks=abundance_breaks,labels=abundance_labels), richness_year = get_richness(obs,breaks=richness_breaks,labels=richness_labels) ) } ``` `20250626_workflow.R`: ```r plot_effort(effort_year, thetitle = "Effort by Location", xaxis_title = "Location", yaxis_title = "Effort" ) plot_richness(richness_year, thetitle = "Species Richness by Location", xaxis_title = "Location", yaxis_title = "Species Richness" ) get_indicators("data/20250626",2022) ``` ## Bonus Challenge ### Pieter's solution ```r plot_indicators <- function(indicators = get_indicators(), language = c("english", "dutch")) { language <- rlang::arg_match(language) list( effort_plot = plot_effort(purrr::chuck(indicators, "effort"), language), abundance_plots = purrr::map( purrr::chuck(indicators, "abundance", "species"), \(species, df = purrr::chuck(indicators, "abundance"), lang = language) { plot_abundance(df, species, language = lang) } ), richness_plot = plot_richness(purrr::chuck(indicators, "richness"), language) ) } ```

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully