HackMD
    • Create new note
    • Create a note from template
    • Sharing Link copied
    • /edit
    • View mode
      • Edit mode
      • View mode
      • Book mode
      • Slide mode
      Edit mode View mode Book mode Slide mode
    • Customize slides
    • Note Permission
    • Read
      • Only me
      • Signed-in users
      • Everyone
      Only me Signed-in users Everyone
    • Write
      • Only me
      • Signed-in users
      • Everyone
      Only me Signed-in users Everyone
    • Commenting & Invitee
    • Publishing
      Please check the box to agree to the Community Guidelines.
      Everyone on the web can find and read all notes of this public team.
      After the note is published, everyone on the web can find and read this note.
      See all published notes on profile page.
    • Commenting Enable
      Disabled Forbidden Owners Signed-in users Everyone
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Invitee
    • No invitee
    • Options
    • Versions and GitHub Sync
    • Transfer ownership
    • Delete this note
    • Note settings
    • Template
    • Save as template
    • Insert from template
    • Export
    • Dropbox
    • Google Drive Export to Google Drive
    • Gist
    • Import
    • Dropbox
    • Google Drive Import from Google Drive
    • Gist
    • Clipboard
    • Download
    • Markdown
    • HTML
    • Raw HTML
Menu Note settings Sharing Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Transfer ownership Delete this note
Export
Dropbox Google Drive Export to Google Drive Gist
Import
Dropbox Google Drive Import from Google Drive Gist Clipboard
Download
Markdown HTML Raw HTML
Back
Sharing
Sharing Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Comment & Invitee
Publishing
Please check the box to agree to the Community Guidelines.
Everyone on the web can find and read all notes of this public team.
After the note is published, everyone on the web can find and read this note.
See all published notes on profile page.
More (Comment, Invitee)
Commenting Enable
Disabled Forbidden Owners Signed-in users Everyone
Permission
Owners
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Invitee
No invitee
   owned this note    owned this note      
Published Linked with GitHub
Like BookmarkBookmarked
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
--- class: mth302 --- # Miniproject 7 **Initial due date: Sunday, April 9 at 11:59pm ET** ## Overview This miniproject will teach you about the **Runge-Kutta** method, a standard numerical solution technique for differential equations. **Prerequisites:** A strong grasp of Euler's Method for single DE's is needed. You will also need to be comfortable using a spreadsheet. Miniproject 6 (Euler's Method for systems) is also recommended. ## Background A description of the Runge-Kutta method along with an example [is given in this tutorial](https://github.com/RobertTalbert/linalg-diffeq/blob/main/tutorials/Runge-Kutta%20tutorial.ipynb). Read it carefully and make sure you can work along with the example before proceeding. ## Assignment 1. Given the initial value problem: $$(2+t^2) y' + 2ty = 0, \quad y(1) = 1$$ (a) Use the Runge-Kutta method with a step size of $h = 0.1$ to find an approximation to $y(2)$. Show your work by hand on the first iteration, then do the rest in a Google Sheet or using Python code according to the formatting rules for [Miniproject 6](/SV8fgpxkRY-M-KYb8FbGzg). The spreadsheet or computer code must show *all* the intermediate steps in a way that allows a reader to reproduce your work without re-entering any code. (b) Repeat part (a) usiung Euler's Method with a step size of $h=0.1$. (c) You can check (but don't do it for your writeup) that an algebraic solution for this IVP is $y(t) = \dfrac{3}{t^2 + 2}$. What is the *exact* value of $y(2)$? And what is the percent error in each of the approximations you did in (a) and (b)? 2. In [Miniproject 5](/Vstzok2PSs6-uST6HpdD8Q), the following IVP is used to model a population that grows under environmental constraints: $$\frac{dP}{dt} = 0.02P\left(1-\frac{P}{500}\right), P(0) = 100$$ Use the Runge-Kutta method with a step size of $h = 0.5$ to estimate the population in year 5. Show your work by hand on the first iteration, then do the rest in a Google Sheet or using Python code according to the formatting rules for [Miniproject 6](/SV8fgpxkRY-M-KYb8FbGzg). The spreadsheet or computer code must show *all* the intermediate steps in a way that allows a reader to reproduce your work without re-entering any code. 3. For the third item on this assignment, you'll use the Runge-Kutta method on a third initial-value problem that will be unique to you. That is, nobody else in either section of MTH 302 will have this particular initial-value problem to solve. [Please click here to go to a Google Form which will ask you for your name and section](https://docs.google.com/forms/d/e/1FAIpQLSeMrkVWWKLIkzcfOgcbY9FxLJMp4_XpUwgPCsnXX_RJWgPOfg/viewform). **Fill this form out no later than 11:59pm ET on Thursday, April 6** and then you will receive your IVP via email no later than Friday, April 7. Please note, the initial due date for this assignment is Sunday, April 9 and so **if you do not fill out the form by 11:59pm ET on Thursday April 6 you will not be able to complete this assignment.** ## Submission and Grading ### Formatting and special items for grading Miniproject 7 involves a significant amount of numerical calculations. The writeup you produce will be different from other Miniprojects, so read the following guidelines carefully. You may do your calculations in one of two ways: 1. **Using a Google Sheet spreadsheet**. Whenever a part of a problem asks you to compute something, enter your work in an organized, easy-to-read way into your spreadsheet and do the computation using spreadsheet formulas. **You are not supposed to do every computation by hand separately!** You are supposed to use the functionality of a spreadsheet to set up a formula in a small number of cells and then apply it automatically (through dragging the formula) to other cells. If you go this route, *use a different tab for each part of each problem*. This would result in one spreadsheet with five tabs. Do not make five different spreadsheets, and do not put all the computations into a single tab on one spreadsheet. If you do either of these, your work will be marked *Incomplete* and returned without comment. When you are done with your spreadsheet, **set the permissions so that everyone with the link can comment** and then include the link in your writeup (see below). 2. **Using Python code inside a Colab notebook**. If you know some Python or are willing to learn, you may write code in a Colab notebook code cell that produces your computations automatically. As with spreadsheets *you are not supposed to do every computation by hand separately* -- the idea is to use code to automatically generate all the result you need on a particular part of a problem. If you write code, please note: **You may not use any `import` statements**, for example you may not import SciPy or NumPy; and **you must include an explanation for what your code is doing and why it works with each code cell you use**. If you import an external library like SymPy or NumPy, or if you give code with no explanation or an insufficient or irrelevant explanation, your work will be marked *Incomplete* and returned without comment. These problems typically also ask for written explanation and sometimes mathematical work that is not a spreadsheet or Python computation. If you are using a spreadsheet, you are allowed to use a document other than a Jupyter notebook (for example a Word document) to write these up. Then be sure to insert the link to your Google Sheet inside the document. If you are writing Python code, just put your written and math work in the Colab notebook with your code, like you usually do. Please note, no other spreadsheets (Excel, Numbers, etc.) are allowed. It has to be a Google Sheet. And, do not use a hand calculator! This would force you to perform roughly 300 different sets hand calculations separately if you did. Use Google Sheets or Python, nothing else. I do not typically look over student work to give feedback before it's submitted, but if you want to show me your work prior to submission to make sure it is *formatted* correctly, that's fine this time. Otherwise: Please review the section on Miniprojects in the document [Standards For Student Work in MTH 302](https://github.com/RobertTalbert/linalg-diffeq/blob/main/course-docs/standards-for-student-work.md#standards-for-miniprojects) before attempting to write up your submission. Note that *all* Miniprojects: - **Must be typewritten**. If any portion of the submission has handwritten work or drawings, it will be marked *Incomplete* and returned without further comment. - **Must represent a good-faith effort at a complete, correct, clearly communicated, and professionally presented solution.** Omissions, partial work, work that is poorly organized or sloppily presented, or work that has numerous errors will be marked *Incomplete* and returned without further comment. - **Must include clear verbal explanations of your work when indicated, not just math or code**. You can tell when verbal explanations are required because the problems say something like "Explain your reasoning". Your work here is being evaluated *partially* on whether your math and code are correct; but just as much on whether your reasoning is correct and clearly expressed. Make sure to pay close attention to both. And please review the requirements above for including your code. ### How to submit You will submit your work on Blackboard in the *Miniproject 7* folder under *Assignments > Miniprojects*. But you will *not* upload a PDF for Miniprojects. Instead you will **share a link that allows me (Talbert) to comment on your work**. [As explained in one of the Jupyter and Colab tutorials](https://gvsu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ef5c0e24-5c1d-437f-be05-af730108b6d8), the process goes like this: 1. In the notebook, click "Share" in the upper right. 2. **Do not share with me by entering my email.** Instead, go to *General Access*, and in the pulldown menu select "Anyone with the link", then set the permissions to "Commenter". 3. Then click "Copy Link". 4. **On Blackboard**, go to the *Assignments* area, then *Miniprojects*. Select Miniproject 5. 5. Under **Assignment Submission**, where it says *Text Submission*, click "Write Submission". 6. **Paste the link to your notebook in the text area that appears.** 7. Then click "Submit" to submit your work. I will then evaluate your work using the link. Specific comments will be left on the notebook itself. General comments will be left on Blackboard.

Import from clipboard

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lost their connection.

Create a note from template

Create a note from template

Oops...
This template is not available.


Upgrade

All
  • All
  • Team
No template found.

Create custom template


Upgrade

Delete template

Do you really want to delete this template?

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Tutorials

Book Mode Tutorial

Slide Mode Tutorial

YAML Metadata

Contacts

Facebook

Twitter

Discord

Feedback

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions

Versions and GitHub Sync

Sign in to link this note to GitHub Learn more
This note is not linked with GitHub Learn more
 
Add badge Pull Push GitHub Link Settings
Upgrade now

Version named by    

More Less
  • Edit
  • Delete

Note content is identical to the latest version.
Compare with
    Choose a version
    No search result
    Version not found

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub

      Please sign in to GitHub and install the HackMD app on your GitHub repo. Learn more

       Sign in to GitHub

      HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Available push count

      Upgrade

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Upgrade

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully