thribhuvan rapolu
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
--- title: 'HMR 2.0 along with code' disqus: hackmd --- HMR 2.0 along with code === ## Index [TOC] Setup HMR 2 --- (4D-Humans/hmr2/models/hmr2.py) * Create backbone feature extractor using ViT(Vision Transformer). ```python= # Create backbone feature extractor self.backbone = create_backbone(cfg) if cfg.MODEL.BACKBONE.get('PRETRAINED_WEIGHTS', None): log.info(f'Loading backbone weights from {cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS}') self.backbone.load_state_dict(torch.load(cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS, map_location='cpu')['state_dict']) ``` * We create SMPL head where we pass the image tokens (conditioning_feats) from ViT transformer as input to it. ```python= # Create SMPL head self.smpl_head = build_smpl_head(cfg) ``` * Create discriminator ```python= # Create discriminator if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0: self.discriminator = Discriminator() ``` * Define loss functions ```python= # Define loss functions self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1') self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1') self.smpl_parameter_loss = ParameterLoss() ``` ViT (backbone feature extractor) (HMR 2) --- * This is used to extract image tokens. * We use a ViT-H/16, the “Huge” variant with 16 × 16 input patch size * Input parameters: * patch_size = 16 * embed_dim = 1280 * depth = 32 (number of blocks) * drop_path_rate = 0.55 * There are 2 types of embedding extractors and we use any one of them. They are : * Hybrid Embed : * The HybridEmbed class uses a pretrained CNN backbone to extract feature maps from images. These feature maps are then flattened and projected into the embedding space * Patch Embed: * The PatchEmbed class converts image inputs into patch embeddings. This is achieved by dividing the input image into patches and projecting them into a lower-dimensional embedding space using a convolutional layer. * Create Positional Embedding ```python= # since the pretraining model has class token self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) ``` * Create drop path rate and depth number of block layers. ```python= dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, ) for i in range(depth)]) ``` * Last layer will be normaliztion layer ```python= self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity() ``` * Each block typically consists of two main components: 1. Multi-head self-attention mechanism 2. Feedforward neural network (MLP). ```python= class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x ``` SMPL Head (Transformer Decoder) (HMR 2) --- * We use a standard transformer decoder with multi-head self-attention. * It processes a single (zero) input token by cross-attending to the output image tokens and ends with a linear readout of Θ * Initial values * joint_rep_type * joint_rep_dim * npose is basically number of pose parameters we want (if joint_rep_type=23, joint_rep_dim=6 then npose=144) * input_is_mean_shape (boolean) * transformer_args ```python= transformer_args = dict( num_tokens=1, token_dim=(npose + 10 + 3) if self.input_is_mean_shape else 1, dim=1024, ) ``` * initialize body_pose (θ), shape (β) and camera (π) with smpl mean parameters ```python= # SMPL.MEAN_PARAMS refer data/smpl_mean_params.npz mean_params = np.load(cfg.SMPL.MEAN_PARAMS) init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0) init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0) init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0) ``` * initialize transformer with transformer_args as parameter to it ```python= self.transformer = TransformerDecoder(**transformer_args) ``` * In TransformerDecoder we use **DropTokenDropout** to prevent overfitting. ```python= self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim)) if emb_dropout_type == "drop": self.dropout = DropTokenDropout(emb_dropout) ``` * We use TransformerCrossAttn class. ```python= self.transformer = TransformerCrossAttn( dim, depth, heads, dim_head, mlp_dim, dropout, norm=norm, norm_cond_dim=norm_cond_dim, context_dim=context_dim, ) ``` * **depth** number of layers are created for transformer block * each layer contains: * **Self-Attention (sa)** - this allows a transformer model to attend to different parts of the same input sequence. * **Cross-Attention (ca)** - This enables the model to attend to the output image tokens or features, allowing it to incorporate information from the image context during decoding. * **FeedForward** - last part of layer ```python= class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.0): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout), ) ``` * All the above components are wrapped inside PreNorm layer and appended to self.layer. ```python= self.layers = nn.ModuleList([]) for _ in range(depth): sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout) ca = CrossAttention( dim, context_dim=context_dim, heads=heads, dim_head=dim_head, dropout=dropout ) ff = FeedForward(dim, mlp_dim, dropout=dropout) self.layers.append( nn.ModuleList( [ PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim), PreNorm(dim, ca, norm=norm, norm_cond_dim=norm_cond_dim), PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim), ] ) ) ``` * While running this model (in forward function): * We pass init mean params as input to transformer/token and output ViT as context to transformer decorder. ```python= def forward(self, x, **kwargs): batch_size = x.shape[0] # vit pretrained backbone is channel-first. Change to token-first x = einops.rearrange(x, 'b c h w -> b (h w) c') init_body_pose = self.init_body_pose.expand(batch_size, -1) init_betas = self.init_betas.expand(batch_size, -1) init_cam = self.init_cam.expand(batch_size, -1) pred_body_pose = init_body_pose pred_betas = init_betas pred_cam = init_cam pred_body_pose_list = [] pred_betas_list = [] pred_cam_list = [] for i in range(self.cfg.MODEL.SMPL_HEAD.get('IEF_ITERS', 1)): # Input token to transformer is zero token if self.input_is_mean_shape: token = torch.cat([pred_body_pose, pred_betas, pred_cam], dim=1)[:,None,:] else: token = torch.zeros(batch_size, 1, 1).to(x.device) # Pass through transformer token_out = self.transformer(token, context=x) token_out = token_out.squeeze(1) # (B, C) # Readout from token_out pred_body_pose = self.decpose(token_out) + pred_body_pose pred_betas = self.decshape(token_out) + pred_betas pred_cam = self.deccam(token_out) + pred_cam pred_body_pose_list.append(pred_body_pose) pred_betas_list.append(pred_betas) pred_cam_list.append(pred_cam) ``` * The transformer decoder is ran for iterative error feedback(IEF_ITERS) number of times. Loss Functions (HMR 2) --- 1. When the image has accurate ground-truth 3D keypoint annotations X* then using the predicted 3D Keypoint X, using L1 loss we calculate : $$ L_{kp3D}=|| X-X^*||_{1} $$ ```python= self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1') def forward(self, pred_keypoints_3d: torch.Tensor, gt_keypoints_3d: torch.Tensor, pelvis_id: int = 39): batch_size = pred_keypoints_3d.shape[0] gt_keypoints_3d = gt_keypoints_3d.clone() pred_keypoints_3d = pred_keypoints_3d - pred_keypoints_3d[:, pelvis_id, :].unsqueeze(dim=1) gt_keypoints_3d[:, :, :-1] = gt_keypoints_3d[:, :, :-1] - gt_keypoints_3d[:, pelvis_id, :-1].unsqueeze(dim=1) conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone() gt_keypoints_3d = gt_keypoints_3d[:, :, :-1] loss = (conf * self.loss_fn(pred_keypoints_3d, gt_keypoints_3d)).sum(dim=(1,2)) return loss.sum() ``` 2. When the image has accurate ground-truth 2D keypoint annotations x* then using the predicted 2D Keypoint π(X), using L1 loss we calculate : $$ L_{kp2D}=|| π(X)-x^*||_{1} $$ ```python= self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1') def forward(self, pred_keypoints_2d: torch.Tensor, gt_keypoints_2d: torch.Tensor) -> torch.Tensor: conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone() batch_size = conf.shape[0] loss = (conf * self.loss_fn(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).sum(dim=(1,2)) return loss.sum() ``` 3. If we have groud truth SMPL pose parameters then we combine pose(θ) and shape(β) the model predictions using an MSE loss. $$ L_{smpl}=|| \theta-\theta^*||^2_{2} + || \beta-\beta^*||^2_{2} $$ ```python= self.smpl_parameter_loss = ParameterLoss() def forward(self, pred_param: torch.Tensor, gt_param: torch.Tensor, has_param: torch.Tensor): batch_size = pred_param.shape[0] num_dims = len(pred_param.shape) mask_dimension = [batch_size] + [1] * (num_dims-1) has_param = has_param.type(pred_param.type()).view(*mask_dimension) loss_param = (has_param * self.loss_fn(pred_param, gt_param)) return loss_param.sum() ``` Discriminator (HMR 2) --- * To make sure whether the model predicts valid 3D poses and use the adversarial prior in HMR. * We train a discriminator $\ D_{k}$ for each factor of the body model, and the generator loss can be expressed as: $$ L_{adv}=\sum_k (D_k(\theta_b,\beta)-1)^2 $$ body pose parameters - $\ θ_b$ shape parameters - β ```python= if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0: disc_out = self.discriminator(pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1)) loss_adv = ((disc_out - 1.0) ** 2).sum() / batch_size loss = loss + self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_adv ``` * ***training discriminator*** * disc_fake_out will return output of discriminator ran for predicted body pose and shape * disc_real_out will return output of discriminator ran for ground truth body pose and shape * loss is calculated by multiplying the initialized weight in config file with disc_fake + disc_real $$ L_{adv}=\sum_k (D_k(\theta_b,\beta)-0)_a^2+(D_k(\theta_b^*,\beta^*)-1)_b^2 $$ *implies ground truth a - loss_fake b - loss_real * Optimizer is used to update weights during training. ```python= def training_step_discriminator(self, batch: Dict, body_pose: torch.Tensor, betas: torch.Tensor, optimizer: torch.optim.Optimizer) -> torch.Tensor: batch_size = body_pose.shape[0] gt_body_pose = batch['body_pose'] gt_betas = batch['betas'] gt_rotmat = aa_to_rotmat(gt_body_pose.view(-1,3)).view(batch_size, -1, 3, 3) disc_fake_out = self.discriminator(body_pose.detach(), betas.detach()) loss_fake = ((disc_fake_out - 0.0) ** 2).sum() / batch_size disc_real_out = self.discriminator(gt_rotmat, gt_betas) loss_real = ((disc_real_out - 1.0) ** 2).sum() / batch_size loss_disc = loss_fake + loss_real loss = self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_disc optimizer.zero_grad() self.manual_backward(loss) optimizer.step() return loss_disc.detach() ``` * We build discriminator network for pose, pose joints and shape. ```python= # poses_alone self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1) nn.init.xavier_uniform_(self.D_conv1.weight) nn.init.zeros_(self.D_conv1.bias) self.relu = nn.ReLU(inplace=True) self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1) nn.init.xavier_uniform_(self.D_conv2.weight) nn.init.zeros_(self.D_conv2.bias) pose_out = [] for i in range(self.num_joints): pose_out_temp = nn.Linear(32, 1) nn.init.xavier_uniform_(pose_out_temp.weight) nn.init.zeros_(pose_out_temp.bias) pose_out.append(pose_out_temp) self.pose_out = nn.ModuleList(pose_out) # betas self.betas_fc1 = nn.Linear(10, 10) nn.init.xavier_uniform_(self.betas_fc1.weight) nn.init.zeros_(self.betas_fc1.bias) self.betas_fc2 = nn.Linear(10, 5) nn.init.xavier_uniform_(self.betas_fc2.weight) nn.init.zeros_(self.betas_fc2.bias) self.betas_out = nn.Linear(5, 1) nn.init.xavier_uniform_(self.betas_out.weight) nn.init.zeros_(self.betas_out.bias) # poses_joint self.D_alljoints_fc1 = nn.Linear(32*self.num_joints, 1024) nn.init.xavier_uniform_(self.D_alljoints_fc1.weight) nn.init.zeros_(self.D_alljoints_fc1.bias) self.D_alljoints_fc2 = nn.Linear(1024, 1024) nn.init.xavier_uniform_(self.D_alljoints_fc2.weight) nn.init.zeros_(self.D_alljoints_fc2.bias) self.D_alljoints_out = nn.Linear(1024, 1) nn.init.xavier_uniform_(self.D_alljoints_out.weight) nn.init.zeros_(self.D_alljoints_out.bias) ``` Training (HMR 2) --- (Look into hmr2.py/training_step()) * We use tensorboard for logging. * **batch** will contain input images from dataset in matches and **mocap_batch** will contain ground truth data. ```python= def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict: batch = joint_batch['img'] mocap_batch = joint_batch['mocap'] ``` * Setup Adam Optimizers for discriminator and smpl_head. (LR=1e-5 and weight_decay=1e-4) ```python= def configure_optimizers(self) -> Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}] optimizer = torch.optim.AdamW(params=param_groups, # lr=self.cfg.TRAIN.LR, weight_decay=self.cfg.TRAIN.WEIGHT_DECAY) optimizer_disc = torch.optim.AdamW(params=self.discriminator.parameters(), lr=self.cfg.TRAIN.LR, weight_decay=self.cfg.TRAIN.WEIGHT_DECAY) return optimizer, optimizer_disc ``` * Pass the training data into model and compute loss from output of model. ```python= batch_size = batch['img'].shape[0] output = self.forward_step(batch, train=True) pred_smpl_params = output['pred_smpl_params'] loss = self.compute_loss(batch, output, train=True) ``` * Pass the body_pose and shape/betas into discriminator and calculate adversarial loss ```python= if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0: disc_out = self.discriminator(pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1)) loss_adv = ((disc_out - 1.0) ** 2).sum() / batch_size loss = loss + self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_adv ``` * save loss_adv and loss_disc ```python= optimizer.step() if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0: loss_disc = self.training_step_discriminator(mocap_batch, pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1), optimizer_disc) output['losses']['loss_gen'] = loss_adv output['losses']['loss_disc'] = loss_disc ``` Pose Transformer v2 (used while running on videos) --- (refer https://arxiv.org/pdf/2304.01199) * We use lart_transformer encoder ```python= self.encoder = lart_transformer( opt = self.cfg, phalp_cfg = self.phalp_cfg, dim = self.cfg.in_feat, depth = self.cfg.transformer.depth, heads = self.cfg.transformer.heads, mlp_dim = self.cfg.transformer.mlp_dim, dim_head = self.cfg.transformer.dim_head, dropout = self.cfg.transformer.dropout, emb_dropout = self.cfg.transformer.emb_dropout, droppath = self.cfg.transformer.droppath, ) ``` * In predict_next function: * inputs are en_pose and en_time * We reconstruct the input data such that pose_shape will be of shape(number of persons,time,0,:). Similar is the mask/has_detection ```python= # set number of people to one n_p = 1 pose_shape_ = torch.zeros(en_pose.shape[0], self.cfg.frame_length, n_p, 229) has_detection_ = torch.zeros(en_pose.shape[0], self.cfg.frame_length, n_p, 1) mask_detection_ = torch.zeros(en_pose.shape[0], self.cfg.frame_length, n_p, 1) # loop thorugh each person and construct the input data t_end = [] for p_ in range(en_time.shape[0]): t_min = en_time[p_, 0].min() # loop through time for t_ in range(en_time.shape[1]): # get the time from start. t = min(en_time[p_, t_] - t_min, self.cfg.frame_length - 1) # get the pose pose_shape_[p_, t, 0, :] = en_pose[p_, t_, :] # get the mask has_detection_[p_, t, 0, :] = 1 t_end.append(t.item()) input_data = { "pose_shape" : (pose_shape_ - self.mean_[:, :, None, :]) / (self.std_[:, :, None, :] + 1e-10), "has_detection" : has_detection_, "mask_detection" : mask_detection_ } ``` * Now we pass the input_data to encoder (which is lart transformer) and then to readout_pose to decode it. ```python= # single forward pass output, _ = self.encoder(input_data, self.cfg.mask_type_test) decoded_output = self.readout_pose(output[:, self.cfg.max_people:, :]) ``` ### LART transformer * Here we implement mask token * positional embeddings ```python= self.pos_embedding = nn.Parameter(positionalencoding1d(self.dim, 10000)) self.pos_embedding_learned1 = nn.Parameter(torch.randn(1, self.cfg.frame_length, self.dim)) self.pos_embedding_learned2 = nn.Parameter(torch.randn(1, self.cfg.frame_length, self.dim)) self.register_buffer('pe', self.pos_embedding) ``` * We use * self.pose_shape_encoder - encoding pose shape features, used by default * self.smpl_head - SMPL head for predicting SMPL parameters * self.loca_head - Location head for predicting 3D location of the person * self.action_head_ava - Action head for predicting action class in AVA dataset labels (This is not used) * We add mask to random index ```python= def bert_mask(self, data, mask_type): if(mask_type=="random"): has_detection = data['has_detection']==1 mask_detection = data['mask_detection'] for i in range(data['has_detection'].shape[0]): indexes = has_detection[i].nonzero() indexes_mask = indexes[torch.randperm(indexes.shape[0])[:int(indexes.shape[0]*self.cfg.mask_ratio)]] mask_detection[i, indexes_mask[:, 0], indexes_mask[:, 1], indexes_mask[:, 2]] = 1.0 ``` * We have 3 transformers in LART: * self.transformer - This is not used * self.transformer1 - This is used after adding pos_embedding_learned1 to input of model after adding mask to it * self.transformer2 - This is used after adding pos_embedding_learned2 to output of self.transformer 1 ```python= #lart_transformer - def forward() # prepare the input data and masking data, has_detection, mask_detection = self.bert_mask(data, mask_type) # encode the input pose tokens pose_ = data['pose_shape'].float() pose_en = self.pose_shape_encoder(pose_) x = pose_en # mask the input tokens x[mask_detection[:, :, :, 0]==1] = self.mask_token x = x + self.pos_embedding_learned1 x = self.transformer1(x, [has_detection, mask_detection]) x = x.transpose(1, 2) x = self.conv_en(x) x = self.conv_de(x) x = x.transpose(1, 2) x = x.contiguous() x = x + self.pos_embedding_learned2 has_detection = has_detection*0 + 1 mask_detection = mask_detection*0 x = self.transformer2(x, [has_detection, mask_detection]) x = torch.concat([self.class_token.repeat(BS, self.cfg.max_people, 1), x], dim=1) return x,0 ``` * Why are we using 2 transformers and 2 pos_embeddings Notations (HMR 2) --- ### Body Model * **θ** = SMPL pose ( θ∈$\ \mathbb R^{24x3x3}$ ) * **β** are the shape parameters (β∈$\ \mathbb R^{10}$) * θ include * $\ \theta_{b} ∈ \mathbb R^{23x3x3}$ body pose parameters * $\ \theta_{g} ∈ \mathbb R^{3x3}$ global orientation * Using θ and β we get **mesh** M ∈$\ \mathbb R^{3xN}$ with N = 6890 vertices * Body joints **X** ∈ $\ \mathbb R^{3xk}$ are defined as a linear combination of the vertices and can be computed as X = M*W with fixed weights W ∈ $\ \mathbb R^{Nxk}$. ### Camera * Perspective camera model where focal length and intrinsics K are fixed. * Each camera π = (R, t) consists of a global orientation R ∈ $\ \mathbb R^{3x3}$ and translation t ∈ $\ \mathbb R^{3}$ . * Points in SMPL space (e.g., joints X) can be projected to the image as x = π(X) = Π(K(RX+t)), where Π is a perspective projection with camera intrinsics K. ### HMR * Θ = [θ, β, π]=f(I) where * f is model * I is single image * f(I) is predictor

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully