阿好伯
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    2
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 口https://hackmd.io/@LHB-0222罩辨識訓練機_Google Teachable Machine 與Raspberry Pi構建TensorFlow Lite應用 [![hackmd-github-sync-badge](https://hackmd.io/4-FA8PJMQ7SpOSivA38CIg/badge)](https://hackmd.io/4-FA8PJMQ7SpOSivA38CIg) > [color=#40f1ef][name=LHB阿好伯, 2020/10/22][:earth_africa:](https://www.facebook.com/LHB0222/) ###### tags: `Python` `社群專案` `樹莓派` [TOC] ![](https://i.imgur.com/2sgQP5R.jpg) 最近剛好收到一個展示的邀約 要展示口罩辨識便嘗試使用樹莓派搭配Google的Teachable Machine網站進行處理 以下文章主要是一些測試時所記錄的步驟 可能不是很完整還是需要有一些使用基礎 若是有人發現問題歡迎提出來討論 ## [Google Teachable Machine訓練模型](https://teachablemachine.withgoogle.com/) 首先使用[Teachable Machine網頁](https://teachablemachine.withgoogle.com/)利用電腦攝像機捕捉有戴口罩與沒戴口罩的畫面 ### 訓練模型 以及一個沒有捕捉到人臉的數據庫 名稱請用英文避免後續出現不相容 ![](https://i.imgur.com/raQcD5G.png) ![](https://i.imgur.com/4UNqtb5.png) ### 察看訓練模型結果 ![](https://i.imgur.com/AhwVAMc.png) ### 下載模型 下載的檔案主要是要給樹莓派的TensorFlow Lite機器學習模型 ![](https://i.imgur.com/4LDJAt3.png) ## 範例 訓練出來的結果就會向下方網址所展示的 大家可以上去試試看 [展示網址](https://teachablemachine.withgoogle.com/models/I__T4_I8h/) ![](https://i.imgur.com/ywTJYIF.png) ## 儲存模型 大家也可以選擇將專案存在Google Drive中 下次要修改或是增減都很方便 ![](https://i.imgur.com/1ekNjcp.png) [專案網址](https://teachablemachine.withgoogle.com/train/image/1njPCz1t_rPe6rZu9tWF_gsZAvJzrwPLu?network=true) # 樹梅派設定 可以參考下方網站進行設定 > [參考網址_Using Raspberry Pi and TensorFlow Lite for Object Detection]( https://gpiocc.github.io/learn/raspberrypi/2020/04/18/martin-ku-using-raspberry-pi-and-tensorflow-lite-for-object-detection.html) ## 安裝模型框架Tensorflow Lite 安裝Tensorflow Lite模型框架 >[參考網址_Python quickstart](https://www.tensorflow.org/lite/guide/python) >https://www.tensorflow.org/lite/guide/build_rpi 依照[Python quickstart](https://www.tensorflow.org/lite/guide/python)網站中列表選擇合適的Tensorflow Lite版本 ```python= pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_armv7l.whl ``` ![](https://i.imgur.com/qFLJMes.png) # 樹莓派接腳輸出 為了能夠將得到的判斷結果不只是顯示於螢幕上 我修改程式碼利用樹莓派進行簡單的GPIO輸出 後續偷懶使用Arduino進行其他元件控制 目前將接上兩個Servo作為柵欄示意與接上一個ws2812作為指示燈 ![](https://i.imgur.com/ib34T2j.png) ```cpp= wget https://github.com/TMRH20/RF24/archive/master.zip sudo apt-get install libboost-python-dev cd RF24-master . /configure --driver=RPi make sudo make install cd pyRF24 sudo python setup.py install sudo python3 setup.py install ``` ## 樹莓派控制程式碼 修改官方提供的 [label_image.py](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/python/) 為 label_image2.py 添加GPIO輸出程序 ```python= # python3 # # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example using TF Lite to classify objects with the Raspberry Pi camera.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import io import time import numpy as np import picamera import RPi.GPIO as GPIO #GPIO套件 import time pinLED1 = 26 #定義GPIO接腳 pinLED2 = 19 pinLED3 = 13 GPIO.setmode(GPIO.BCM) #定義GPIO接腳編號方式 GPIO.setup(pinLED1, GPIO.OUT) #定義GPIO接腳模式 GPIO.setup(pinLED2, GPIO.OUT) GPIO.setup(pinLED3, GPIO.OUT) from PIL import Image from tflite_runtime.interpreter import Interpreter def load_labels(path): with open(path, 'r') as f: return {i: line.strip() for i, line in enumerate(f.readlines())} def set_input_tensor(interpreter, image): tensor_index = interpreter.get_input_details()[0]['index'] input_tensor = interpreter.tensor(tensor_index)()[0] input_tensor[:, :] = image def classify_image(interpreter, image, top_k=1): """Returns a sorted array of classification results.""" set_input_tensor(interpreter, image) interpreter.invoke() output_details = interpreter.get_output_details()[0] output = np.squeeze(interpreter.get_tensor(output_details['index'])) # If the model is quantized (uint8 data), then dequantize the results if output_details['dtype'] == np.uint8: scale, zero_point = output_details['quantization'] output = scale * (output - zero_point) ordered = np.argpartition(-output, top_k) return [(i, output[i]) for i in ordered[:top_k]] def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '--model', help='File path of .tflite file.', required=True) parser.add_argument( '--labels', help='File path of labels file.', required=True) args = parser.parse_args() labels = load_labels(args.labels) interpreter = Interpreter(args.model) interpreter.allocate_tensors() _, height, width, _ = interpreter.get_input_details()[0]['shape'] with picamera.PiCamera(resolution=(520, 400), framerate=30) as camera: camera.start_preview(fullscreen=False,window=(100,200,300,400)) camera.preview.alpha = 300 try: stream = io.BytesIO() for _ in camera.capture_continuous( stream, format='jpeg', use_video_port=True): stream.seek(0) image = Image.open(stream).convert('RGB').resize((width, height), Image.ANTIALIAS) start_time = time.time() results = classify_image(interpreter, image) elapsed_ms = (time.time() - start_time) * 1000 label_id, prob = results[0] stream.seek(0) stream.truncate() camera.annotate_text = '%s %.2f\n%.1fms' % (labels[label_id], prob, elapsed_ms) # 簡單的IF判斷程序控制GPIO輸出 if labels[label_id] == "0 YES": GPIO.output(pinLED1, 0) GPIO.output(pinLED2, 0) GPIO.output(pinLED3, 0) GPIO.output(pinLED1, 1) #Right time.sleep(1) elif labels[label_id] == "1 NO": GPIO.output(pinLED1, 0) GPIO.output(pinLED2, 0) GPIO.output(pinLED3, 0) GPIO.output(pinLED2, 1) time.sleep(1) elif labels[label_id] == "2 NA": GPIO.output(pinLED1, 0) GPIO.output(pinLED2, 0) GPIO.output(pinLED3, 0) GPIO.output(pinLED3, 1) #Left time.sleep(1) finally: camera.stop_preview() if __name__ == '__main__': main() ``` ## 樹莓派與Arduino腳位記錄 | Raspberry Pi | <-----> | Arduino | | :--------: | :--------: | :--------: | | 13 | <-----> | 2 | |19 | <-----> | 3| |26| <-----> |4| |ws2812| <-----> | 5 | |servoR| <-----> | 9 | |servoL| <-----> | 10 | 後續有時間規劃以NRF24L01作為樹莓派與Arduino的連接橋梁 |NRF24L01| <-----> |樹莓派| | :--------: | :--------: | :--------: | |GND| <-----> |GND| |VCC| <-----> |3.3V| |CE| <-----> |GPIO25 即22管腳| |CSN| <-----> |CE0(GPIO8) 即 24管腳| |SCK| <-----> |SCLK(GPIO11)即23管腳| |MOSI| <-----> |MOSI(GPIO10)即19管腳| |MISO| <-----> |MISO(GPIO9)即21管腳| |IRQ| <-----> |GPIO18即12管腳| |NRF24L01| <-----> |Arduino| | :--------: | :--------: | :--------: | |VCC| <-----> |3.3V| |GND| <-----> |GND| |CE| <-----> |D9| |CSN| <-----> |D10| |MOSI|<-----> |D11| |SCK| <-----> |D13| |IRQ| <-----> |不接| ## arduino控制 ```cpp= #include <Adafruit_NeoPixel.h> #include <Servo.h> #ifdef __AVR__ #include <avr/power.h> #endif #define PIN 5 //ws2812接腳 #define NUMPIXELS 3 //ws2812 燈泡數 Servo servoR, servoL; Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); #define DELAYVAL 500 const int IR1 = 2; const int IR2 = 3; const int IR3 = 4; int IR1r = 1; int IR2r = 1; int IR3r = 1; void setup() { servoL.attach(9,500,2400); servoR.attach(10,500,2400); #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000) clock_prescale_set(clock_div_1); #endif pixels.begin(); //pixels.Brightness(255); Serial.begin(9600); //設定鮑率為9600 pinMode(IR1, INPUT); //設定Pin2為IR-1輸入接腳 pinMode(IR2, INPUT); //設定Pin3為IR-2輸入接腳 pinMode(IR3, INPUT); //設定Pin4為IR-3輸入接腳 } void loop() { IR1r= digitalRead(IR1);//2 IR2r= digitalRead(IR2);//3 IR3r= digitalRead(IR3);//4 if (IR1r == 1) { //YES 綠線 pixels.clear(); pixels.setPixelColor(0, pixels.Color(0, 255, 0)); pixels.setPixelColor(1, pixels.Color(0, 255, 0)); pixels.setPixelColor(2, pixels.Color(0, 255, 0)); pixels.show(); servoR.write(155); servoL.write(20); delay(1000); } else { if (IR2r == 1) { //NO 黃線 pixels.clear(); pixels.setPixelColor(0, pixels.Color(255, 0, 0)); pixels.setPixelColor(1, pixels.Color(255, 0, 0)); pixels.setPixelColor(2, pixels.Color(255, 0, 0)); pixels.show(); servoR.write(90); servoL.write(90); delay(1000); } else { if (IR3r == 1) { //NA 橘線 pixels.clear(); pixels.setPixelColor(0, pixels.Color(255, 255, 255)); pixels.setPixelColor(1, pixels.Color(255, 255, 255)); pixels.setPixelColor(2, pixels.Color(255, 255, 255)); pixels.show(); servoR.write(90); servoL.write(90); delay(1000); } } } } ``` # 執行分類程序 ```cpp= python3 /home/pi/examples/lite/examples/image_classification/raspberry_pi/classify_picamera2.py \ --model /home/pi/ai/model.tflite \ --labels /home/pi/ai/labels.txt python3 /home/pi/examples/lite/examples/image_classification/raspberry_pi/classify_picamera2.py \ --model /home/pi/Desktop/model.tflite \ --labels /home/pi/ai/Desktop/labels.txt ``` ![](https://i.imgur.com/MxVrn6y.png) ![](https://i.imgur.com/rdVqaLl.png) ## 開機執行 https://www.youtube.com/watch?v=zRXauWUumSI&feature=emb_logo # 結論 使用Google的Teachable Machine可以讓我們非常快速的收集資料與訓練模型 可惜目前已這方式無法進行太複雜的訓練 但在許多時候善用這些軟體與工具也可以造出許多以意思的專案 期待這次的分享可以給大家一個範本讓大家能做出更多有趣的東西 ==以下是嘗試過的一些程式碼不知道有沒有甚麼用可忽略== 連接Arduino進行控制 ```cpp= #include <Servo.h> //TODO: fix this url hinting WebUSB WebUSBSerial(1 /* https:// */, "webusb.github.io/arduino/demos/rgb"); #define Serial WebUSBSerial Servo myservo; const int redPin = 9; const int greenPin = 10; const int bluePin = 11; int pos = 0; // variable to store the servo position int color[0]; int colorIndex; void setup() { pinMode(5, OUTPUT); pinMode(6, OUTPUT); pinMode(7, OUTPUT); colorIndex = 0; Serial.begin(9600); Serial.write("Sketch begins.\r\n"); Serial.flush(); } void loop() { color[0] = Serial.read(); Serial.print(color[0]); if (color[0] == 0) { delay(2000); digitalWrite(5, HIGH); delay(1000); digitalWrite(5, LOW); delay(1000); } else if (color[0] == 1) { delay(2000); digitalWrite(6, HIGH); delay(1000); digitalWrite(6, LOW); delay(1000); } else if (color[0] == 2) { delay(2000); digitalWrite(6, HIGH); delay(1000); digitalWrite(6, LOW); delay(1000); } } ``` 安裝OpenCV套件 sudo raspi-config 選擇"7 Advanced Options" à "A1 Expand filesystem ",重開機。 更新及升級所有套件包 sudo apt-get update && sudo apt-get upgrade 安裝開發者套件CMake 需要用來編譯 sudo apt-get install build-essential cmake pkg-config 安裝有關OpenCV的相依套件 ```cpp= sudo apt-get install libjpeg-dev libpng-dev libtiff-dev sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev sudo apt-get install libxvidcore-dev libx264-dev sudo apt-get install libgtk-3-dev sudo apt-get install libcanberra-gtk* sudo apt-get install libatlas-base-dev gfortran sudo apt-get install python3-dev ``` 下載OpenCV4.0版至RPi4 。 cd ~ wget -O opencv.zip https://github.com/opencv/opencv/archive/4.0.0.zip wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.0.0.zip 並解壓縮檔案 unzip opencv.zip unzip opencv_contrib.zip 建立opencv 和 opencv_contrib資料夾及將檔案放置資料夾內 mv opencv-4.0.0 opencv mv opencv_contrib-4.0.0 opencv_contrib 先在opencv資料夾內建立名為build的資料夾 cd ~/opencv mkdir build cd build 使用CMake來設置OpenCV 4環境(從這步驟開始是最花時間) cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ -D ENABLE_NEON=ON \ -D ENABLE_VFPV3=ON \ -D BUILD_TESTS=OFF \ -D OPENCV_ENABLE_NONFREE=ON \ -D INSTALL_PYTHON_EXAMPLES=OFF \ -D BUILD_EXAMPLES=OFF 調整RPi4的SWAP交換空間,來解決編譯OpenCV記憶體不足的問題。 sudo nano /etc/dphys-swapfile 請把 CONF_SWAPSIZE=100改成 2048 重新開啟SWAP服務 sudo /etc/init.d/dphys-swapfile stop sudo /etc/init.d/dphys-swapfile start 開啟四核心編譯OpenCV make -j4 安裝OpenCV sudo make install sudo ldconfig https://gpiocc.github.io/learn/raspberrypi/2020/04/18/martin-ku-using-raspberry-pi-and-tensorflow-lite-for-object-detection.html ```cpp= cd ~/ai python3 -m venv tfl source tfl/bin/activate pip install --upgrade pip cd examples/lite/examples/object_detection/raspberry_pi pip install -r requirements.txt python detect_picamera.py \ --model ~/ai/model.tflite \ --labels ~/ai/labels.txt python detect_picamera.py \ --model ~/ai/all_models/mobilenet_ssd_v2_coco_quant_postprocess.tflite \ --labels ~/ai/all_models/coco_labels.txt # https://gpiocc.github.io/learn/raspberrypi/2020/06/20/martin-ku-custom-tensorflow-image-classification-with-teachable-machine.html git clone https://github.com/tensorflow/examples.git cd examples/lite/examples/image_classification/raspberry_pi pip install -r requirements.txt python classify_picamera.py --model ~/ai/model.tflite --labels ~/ai/labels.txt ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully