Dmitriy Soloduha
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # Лекция №11 Солодуха Дмитрий, Малявко Александра ## Плоские кривые. **Элементарной плоской кривой** на плоскости называется образ открытого интервала $(a,b)\subset {\mathbb{R}}$ при его гомеоморфизме $f: (a,b)\to {\mathbb{R}}^2$ в евклидову плоскость. Общей кривой на плоскости называется подмножество евклидовой плоскости, локально гомеоморфное прямой. Пример кривой Кубика Чирнгауза: ![Пример кривой](https://i.imgur.com/uSV9y6D.png) ## Непараметрическое и параметрическое представление кривых. Математически кривая может быть представлена в параметрической или непараметрической форме. Непараметрическая кривая задается в виде явной или неявной функции. Для плоской кривой явное непараметрическое представление имеет вид: $$y = f(x).$$ Однако такое задание не всегда удобно и более того не может описать все многообразие кривых на плоскоскти в силу своей ограниченности --- иньективности. Для вычислений в дифференциальной геометрии наиболее удобны векторно-параметрическое представление: $$\vec r(t)=(x(t), y(t)),\;\; t\in (a,b),$$ и координатно-параметрическое представление: $$x=x(t),\; y=y(t),\; t\in (a,b),$$ отличающиеся лишь формой записи. ## Параметрический кубический сплайн Эрмита, кривые Безье n-го порядка, интерполяционные кривые Безье, Лагранжа. ### Кубический сплайн Эрмита __Кубический Эрмитов сплайн__ — сплайн, построенный из кубических полиномов с использованием эрмитовой интерполяции, в соответствии с которой интерполируемая функция задается не только своими значениями в n точках, но и её первыми производными. Для заданной интерполяционной сетки $x_k$ для $k=1,...,n$ и заданного значения независимой переменной $x$ вычисление функции проводится в соответствующем интервале $(x_{k},x_{k+1})$ с известными граничными значениями функции $p$ и её производной $m$. Для упрощения вычислений делается замена независимой переменной $x$ на независимую переменную $t$ по формуле $t=\frac{x-x_{k}}{x_{k+1}-x_{k}}$. В результате такой замены левая граница интервала становится равной $0$, а правая $1$. Кубический полином, служащий для вычисления интерполируемой функции в соответствующем интервале имеет вид: $$ \begin{multline*} {\boldsymbol {p}}(t)=(2t^{3}-3t^{2}+1){\boldsymbol {p}}_{k}+(t^{3}-2t^{2}+t)(x_{k+1}-x_{k}){\boldsymbol {m}}_{k}+ \\ +(-2t^{3}+3t^{2}){\boldsymbol {p}}_{k+1}+(t^{3}-t^{2})(x_{k+1}-x_{k}){\boldsymbol {m}}_{k+1} \end{multline*} $$ ### Кривые Безье и интепроляционные кривые Безье __Кривая Безье__ — это образ единичного отрезка под действием линей- ной комбинации базисных функций Бернштейна с векторными коэффи- циентами. Кривые Безье широко применяются в компьютерной графи- ке, с их помощью работают практически все компьютерные векторные шрифты и др. Сначала введём __многочлены Бернштейна__: $$B_{i}^{n}(t) = \binom{n}{i} \, t^i (1 - t)^{n - i}.$$ Примеры многочленов Бернштейна: ![](https://i.imgur.com/q21gFBe.png) Теперь рассмотрим набор точек плоскости $Q = \left\{q_i \in R^2 \right\}^n_{i=0}$ , которые в дальнейшем будем называть контрольными точками. Кривой Безье называется множество точек: $$\left\{B(t) \,\mid\, t \in \left[0,\, 1\right] \right\},$$ где $$B(t) = \sum_{i = 0}^{n} B_{i}^{n}q_i.$$ Пример простейших кривых Безье: ![](https://i.imgur.com/WToWrrt.png) ### Алгебраическая интерполяция кривых Помимо этого, если заданы узлы интерполяции, то можно воспользоваться алгебраической __интерполяцией многочленами Лагранжа__: $$g(t)=\sum_{i=0}^{n} \Lambda_{i}(t) p_{i}=\sum_{i=0}^{n} \Lambda_{i}(t)\left[\begin{array}{l} x_{i} \\ y_{i} \end{array}\right],$$ $$\Lambda_{i}(t)=\prod_{i \neq j} \frac{t-t_{j}}{t_{i}-t_{j}}.$$ ## Интерполяция сплайнами. Сплайн $s \in S_{\Delta}^{m}$ называется интерполяционным для функции $f$, если $$ s\left(x_{i}\right)=f\left(x_{i}\right)=y_{i} \quad \forall i=\overline{0, n} . $$ Интерполяционный сплайн $s \in S_{\Delta}^{1}$ представляет собой кусочно-линейную функцию (график -- ломаная линия), построенную по точкам $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$. ![](https://i.imgur.com/YZNRmWR.png) Больший интерес, конечно, представляют сплайны высших степеней. Наиболее распространенными являются кубические интерполяционные сплайны $(m=3)$. ![](https://i.imgur.com/HP7wwiA.png) ## Сплайны, составленные из кривых Безье. Сплайны можно строить с помощью кривых Безье. Для этого достаточно приближать функцию на интервале с помощью многолченов Бернштейна, а так как через начальную и конечную точку он заведомо проходит, то можно дополнительно наложить условие на гладкость первого порядка и получить нужный нам сплайн. ## B-сплайны. **B-сплайн** — сплайн-функция, имеющая наименьший носитель для заданной степени, порядка гладкости и разбиения области определения. Фундаментальная теорема устанавливает, что любая сплайн-функция для заданной степени, гладкости и области определения может быть представлена как линейная комбинация B-сплайнов той же степени и гладкости на той же области определения. Термин B-сплайн был введён И. Шёнбергом и является сокращением от словосочетания «базисный сплайн». В системах автоматизированного проектирования и компьютерной графике термин B-сплайн часто описывает сплайн-кривую, которая задана сплайн-функциями, выраженными линейными комбинациями B-сплайнов. Когда узлы равноудалены друг от друга, говорят, что B-сплайн является **однородным**, в противном случае его называют **неоднородным**. Когда количество узлов совпадает со степенью сплайна, B-сплайн вырождается в кривую Безье. Форма базисной функции определяется расположением узлов. Масштабирование или параллельный перенос базисного вектора не влияет на базисную функцию. Сплайн содержится в выпуклой оболочке его опорных точек. Базисный сплайн степени $n$ -- $b_{{i,n}}(t)$ -- не обращается в нуль только на промежутке $[t_i, t_i+n+1]$, то есть $b_{{i,n}}(t)=\left\{{\begin{matrix}>0&{\mathrm {если}}\quad t_{{i}}\leq t<t_{{i+n+1}}\\0&{\mathrm {иначе.}}\end{matrix}}\right.$ Другими словами, изменение одной опорной точки влияет только на локальное поведение кривой, а не на глобальное, как в случае кривых Безье. Базисная функция может быть получена из полинома Бернштейна. ## Кривизна кривой, длина дуги. Пусть $γ(t)$ — регулярная кривая в d-мерном евклидовом пространстве, параметризованная длиной. Тогда $\kappa=|\ddot\gamma(t)|$ называется **кривизной кривой $γ$ в точке $p = γ(t)$**, здесь $\ddot\gamma(t)$ обозначает вторую производную по $t$. Вектор $k=\ddot\gamma(t)$ называется **вектором кривизны $γ$ в точке $p = γ(t_0)$**. Для кривой, заданной параметрически в общем случае (параметр не обязательно является длиной), кривизна отображается формулой $\kappa=\frac{|\dot\gamma\times \ddot\gamma|}{|\dot\gamma|^3}$, где $\dot\gamma$ и $\ddot\gamma$ соответственно обозначают первую и вторую производную радиус-вектора $γ$ в требуемой точке. Для того чтобы кривая $γ$ совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы кривизна (или вектор кривизны) тождественно равнялась нулю. Величина, обратная кривизне кривой, называется **радиусом кривизны**; он совпадает с радиусом соприкасающейся окружности в данной точке кривой. Центр этой окружности называется **центром кривизны**. **Длина дуги кривой** определяется так: длиной $l$ дуги называется предел, к которому стремится периметр вписанной в эту дугу ломаной при неограниченном увеличении числа её звеньев и при стремлении к нулю наибольшей из длин её звеньев. Соответствующее выражение имеет вид: $l=\lim\limits_{\max \Delta l_i \rightarrow 0} ⁡\sum\limits_i^n \Delta l_i$. Пусть кривая задана между своими точками $A$ и $B$ на отрезке $[a,b]$ уравнением в явном виде $y=f(x)$, где $f(x)$ -- непрерывная функция с непрерывной первой производной на этом отрезке. В этом случае длина дуги кривой между точками точками $A$ и $B$ вычисляется по формуле $l=\int\limits_{a}^{b} \sqrt{1+y^{\prime 2}} dx$.

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully