ArantxaZapico
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    We thank the reviewers for helpful comments and detailed inspection. All concerns and minor typos will be addressed. We are especially thankful for the presentation suggestion of Reviewer A for introduction and Section 5, and for the detailed input on the Definition 5 and suggestions for technical overview from Reviewer B, we will take them all in account for the final version. **General Comments --Comparison with previous work--** We recall the difference from O(m^2) in Caulk+ to O(m) in Baloo is in group operations for the prover, while in the field asymptotic efficiency is the same. In Flookup techniques are very different and the construction uses a non-homomorphic commitment to the big table; this makes it complicated to use it as a building block in many protocols, which is one of the goals for Baloo. An extra discussion is devoted to EFG22 as it is the only one that, while having homomorphic commitments, outperforms Baloo. We have only compared concrete performance with Caulk because it is, to the best of our knowledge, the only protocol that has an implementation publicly available. It is in our interests to compare with all existing constructions. EFG22: We apologize as there is a typo in the table on the performance of cq, where it says O(m log^2 m) should be O(m log m). Please note the reported efficiency in the paragraph called "Concurrent work" is the correct one. We are especially interested in a comparison with EFG22, as the prover performance only differs asymptotically on a log(m) factor for field operations, while Baloo offers an extra feature. Namely, in cq two lookup tables $\vec a=(a_1, a_3, a_7, a_3)$ and $\vec a'=(a_7, a_1, a_3, a_3)$ are indistinguishable. That is, given table $\vec t$, the prover in cq commits to the elements taken from the public table to construct the lookup, and its repetitions, but not to the order. In Baloo, as we use a matrix to construct the lookup from the public table, the prover commits to the elements, the repetitions, and the order as well. The difference above implies Baloo can be used for proving "repeated" lookups, meaning the same lookup operation is applied to one or two different tables, and also for the case where the lookup is made public (either because matrix $\matrix M$ is public or published by the Prover after the interaction). The latter is the case in applications such as memory access or subset opening, where the system needs to keep track of the order of the elements in all tables. **Reviewer A** *On the right side of page 4, once the expansion relationship is modeled as Equation (1), the paper claims that the lincheck argument is modified from [RZ21] and the inner product is also proven using the generalized univariate sumcheck in [RZ21]. It will be better to explain why the protocols in [RZ21] can’t work for a committed matrix instead of a public matrix, and what modifications in this paper are critical to make it work.* * In the protocol of [RZ21], the matrix is public and fixed. "Since M is only known by the prover in our new construction, we replace the offline phase usually performed by some untrusted party with a commitment phase performed by the prover itself" refers specifically to polynomial $v(X)$(that describes matrix M) in Fig.2, that is sent by the prover in Baloo but part of an offline untrusted pre-computation in [RZ21]. **Reviewer B** *The core underlying idea is to replace one of the building blocks in the lookup arguments of Caulk and Caulk+, with a different linear argument which is a protocol from RZ21 for proving linear relations.* *The exposition is less than satisfactory: there is no clear explanation of the key technical idea that bring the prover down from quadratic to linear. Moreover, the paper seems to be written for an audience that is familiar with Caulk, Caulk+ and other closely related work.* * Exposition is incredibly important. We did spend time and effort on the writing quality but remain eager for suggestions for how to improve. We can certainly expand the background on Caulk and Caulk+. Unfortunately we cannot give you one simple core technical idea for bringing the prover time down. Caulk and Caulk+ use a protocol for proving the relation between $\vec t$ and $\vec a$ that is quadratic on the size of $\vec a$. We replace this building block, which is the bottleneck, entirely. Thus, we get rid of the quadratic computations for the prover. An overview of this new building block is given in Section 4, "Expansion as a linear relation", and we will take the reviewer's suggestion to improve it. *It is unclear why the abstraction of CSS, and commit-and-prove CSS is useful in achieving linear prover; what is the relation that shows up in look up arguments that is a natural CSS relation.* * We use the framework of [RZ21], which consists of performing a CSS+inner product. For the CSS, encode matrix $\matrix M$ as a bivariate polynomial. Then, the prover samples a vector in row space of the matrix, with random coins chosen by the verifier, and outputs a polynomial $D(X)$ encoding it, which will later be used for the inner product argument. The prover has to convince the verifier that $D(X)$ is indeed well formed. * The CSS we use, while inspired in one of the constructions in [RZ21] (that inspires itself in Marlin), differs a lot and brings many challenges. (see CSS item on page 6) *In the Sampling phase: cns <- C. What is the space C? What is cns and the sampling algorithm Smp for s = Smp(cns)? None of these seem to be defined.* * $\mathsf{cns}$ are the random coins sampled by the Verifier, sampled from space $\mathcal{C}$. $\mathsf{Smp}:\mathcal{C}\to\mathbb{F}^m$ is a sampling function, in Section 5.3, $\mathsf{cns}=\alpha$ and $\mathsf{Smp}(\alpha)=(\mu_1(\alpha), \ldots, \mu_m(\alpha))$. *Soundness: b ← ⟨P∗CSS(instance),VCSS(instance)⟩ instance is undefined. Presumably, the interactive Sample protocol determines cns and D, and that together with inst, defines the instance for the commit-and-prove protocol?* * $\mathsf{instance}$ is a tuple $(\mathsf{cm}_{\mathbb{H}_I}, \mathsf{cm}_{\matrix{M}}, \mathsf{cns}, D(X))$ as in the definition of $\mathbb{R}_\mathsf{CSS}$. $\mathsf{cns}$ and $D(X)$ are defined during the interaction of $\mathcal{P}$ and $\mathcal{V}$. *Section 6: what is the difference between Rlookup and Rcp-expansion? It looks like the same relation? Is the vector c part of the instance in Rlookup; is it known to the verifier?* * $\mathbb{R}_\mathsf{lookup}$ and $\mathbb{R}_\mathsf{cp-expansion}$ differ as the former compares vector $\vec a$ encoded in polynomial $\phi(X)$ with the public table $\vec c\in\mathbb{F}^N$ while the latter compares it with a vector $\vec t$ that is potentially unknown to the verifier, that why "cp" in the name. We call it cp-expansion because we will have that all the elements in $\vec t$ are also in $\vec a$, but with repetitions, and thus $\vec a$ is an expansion of $\vec t$.

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully