jb2262
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # L06 ###### tags: `微分方程特論` ###### date: `8 Apr 2020` (第2次線上上課) # Review of Lesson 5 Sec. 5.4: The Eigenvalue Method for Homogeneous Systems --- :film_frames: [20200408_1.MTS](https://reurl.cc/pd5kpa) starts form 00:00 A linear system of equations with constant coefficients can be written as $$\dfrac{d\mathbf{x}}{dt}=\mathsf{A}\mathbf{x},\tag{1}$$where $\mathsf{A}$ is an $n\times n$ matrix with constant coefficients (i.e., independnent of $t$). For such a system, we consider a solution of form$$\mathbf{x}=\mathbf{v}e^{\lambda t},$$ and substitute it into equation (1):$$\lambda\mathbf{v}e^{\lambda t}=\mathsf{A}\mathbf{v}e^{\lambda t}.\tag{2}$$ There follows $$\lambda\mathbf{v}=\mathsf{A}\mathbf{v}\tag{3}$$ or $$(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}=\mathbf{0},\tag{4}$$ where $\mathsf{I}$ is the $n\times n$ identity matrix. :film_frames: [20200408_1.MTS](https://reurl.cc/pd5kpa) 2:15 Equation (4) can have nontrivial solutions (i.e. solutions other than $\mathbf{v}=\mathbf{0}$) only if$$\det(\mathsf{A}-\lambda\mathsf{I})=0.\tag{5}$$ We can hereby confirm that the scalar $\lambda$ is an eigenvalue of $\mathsf{A}$, and the vector $\mathbf{v}$ is the eigenvector of $\mathsf{A}$ that is associated with $\lambda$. Since $\mathsf{A}$ is an $n\times n$ matrix, it has $n$ eigenvalues, each of which may or may not differ from the others. Therefore we need the following discussion. :film_frames: [20200408_1.MTS](https://reurl.cc/pd5kpa) 3:55 ### Case 1: distinct real eigenvalues Suppose that Equation (5) has $n$ distinct real roots $\lambda_i(i=1,2,\ldots,n)$ and eigenvectors $\mathbf{v}_i(i=1,2,\ldots,n)$, where $\mathbf{v}_i$ corresponds to $\lambda_i$. According to theory of linear algebra, $\{\mathbf{v}_i\}^n_{i=1}$ is a set of linearly independent vectors. Also, we have the following results: - $\{\mathbf{v}_ie^{\lambda_i t}\}^n_{i=1}$ is also a set of linearly independent functions, each of which satisfies Equation (1). - We can prove this by using the Wronskian of $\mathbf{v}_ie^{\lambda_i t}$. - $\{\mathbf{v}_ie^{\lambda_i t}\}^n_{i=1}$ is called a **fundamental solution set** of Equation (1). - The **general solution** of Equation (1) is $$\displaystyle\mathbf{x}(t)=\sum^n_{i=1}c_i\mathbf{v}_ie^{\lambda_i t},\tag{6}$$where $c_i$ are arbitrary constants # Lesson 06 Sec. 5.4: The Eigenvalue Method for Homogeneous Systems --- ### Example of Case 1 - :film_frames: [20200408_1.MTS](https://reurl.cc/pd5kpa) 7:13 ::: warning Find the general solution of $$\left\{\begin{matrix}\begin{array}{l}\dfrac{dx_1}{dt}=7x_1-x_2+6x_3\\ \dfrac{dx_2}{dt}=-10x_1+4x_2-12x_3\\ \dfrac{dx_3}{dt}=-2x_1+x_2-x_3\end{array}\end{matrix}\right.\tag{7}$$ ::: #### Solution First we rewrite the system as $$\dfrac{d\mathbf{x}}{dt}=\underbrace{\begin{pmatrix}7&-1&6\\-10&4&-12\\-2&1&-1\end{pmatrix}}_{\text{matrix }\mathbf{A}}\underbrace{\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}}_{\text{vector }\mathbf{x}}.\tag{8}$$ And then we solve the eigenvalues with the secular (characteristic) equation $(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}=\mathbf{0}$, or $$\begin{align}0&=\begin{vmatrix}7-\lambda&-1&6\\-10&4-\lambda&-12\\-2&1&-1-\lambda\end{vmatrix}\\&=(7-\lambda)(4-\lambda)(-1-\lambda)-24+60+12(4-\lambda)+12(7-\lambda)+10(1+\lambda)\\&=\lambda^3-10\lambda^2-31\lambda-30\\&=(\lambda-2)(\lambda-3)(\lambda-5)\end{align}$$ The solutions of $\lambda$ are $\lambda=2,3,5.$ ::: spoiler To factorize $\lambda^3-10\lambda^2-31\lambda-30$, we use the [rational root theorem](https://en.wikipedia.org/wiki/Rational_root_theorem) and substitute: $\lambda=1:\quad 1-10+31-30\neq 0$, so $\lambda-1$ is a factor; $\lambda=2:\quad 8-40+62-30 = 0$, so $\lambda-2$ is a factor. $\begin{align}\lambda^3-10\lambda^2-31\lambda-30&=(\lambda-2)(\lambda^2-10\lamdba+15)\\(\lambda-2)(\lambda-3)(\lambda-5)\end{align}$ ::: \ For ==$\lambda_1 =2$==, we can find its associated eigenvector by solving $$\begin{pmatrix}5&-1&6\\-10&2&-12\\-2&1&-3\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}.$$(We can simply expand it, rather than perform Gaussian elimination or row reducing.) From $$\left\{\begin{array}{r}5a-b+6c&=0\\-10a+2b-12c&=0\\-2a+b-3c&=0\end{array}\right.,$$ we find that: - the first and the second equations are dependent; - adding the first and the third equations gives $3a+3c=0$ or $a+c=0$ Thus if we choose $a=1$, then $c=-1$ and substituting these into the first equation gives $b=5a+6c=-1$. So the eigenvector which associated with $\lambda_1=1$ is ==$\mathbf{v}_1=\begin{pmatrix}1&-1& -1\end{pmatrix}^T$== and the first solution is $$\mathbf{x}_1=\begin{pmatrix}1\\-1\\ -1\end{pmatrix}e^{2t}.$$ For ==$\lambda_2 =3$==, we have the equation $$\begin{pmatrix}4&-1&6\\-10&1&-12\\-2&1&-4\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix},$$ which gives $$\left\{\begin{array}{r}4a-b+6c&=0\\-10a+b-12c&=0\\-2a+b-4c&=0\end{array}\right.,$$ from which: - adding the first and the second equations we obtain $-6a-6c=0$ or $a+c=0$; - adding the first and the second equations we obtain $-8a-8c=0$, which is dependent with the previous one. If we choose $a=1$, then $c=-1$, and $b=4a+6c=-2$. So the eigenvector associated with $\lambda_2=3$ is ==$\mathbf{v}_2=\begin{pmatrix}1&-2& -1\end{pmatrix}^T$== and the second solution is $$\mathbf{x}_2=\begin{pmatrix}1\\-2\\ -1\end{pmatrix}e^{3t}.$$ For ==$\lambda_3 =5$==, we have the equation $$\begin{pmatrix}2&-1&6\\-10&-1&-12\\-2&1&-6\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix},$$ which gives $$\left\{\begin{array}{r}2a-b+6c&=0\\-10a-b-12c&=0\\-2a+b-6c&=0\end{array}\right.,$$ from which we find: - adding the first and the second equations gives $12a+18c=0$ or $2a+3c=0$; - the first and the third equations are dependent. If we choose $a=3$, then $c=-2$, and $b=2a+6c=-6$. So the eigenvector associated with $\lambda_3=5$ is ==$\mathbf{v}_3=\begin{pmatrix}3&-6& -2\end{pmatrix}^T$== and the third solution is $$\mathbf{x}_3=\begin{pmatrix}3\\-6\\ -2\end{pmatrix}e^{5t}.$$ Finally, with the three (linearly independent) solutions we've found, we obtain the general solution $$\boxed{\mathbf{x}(t)=c_1\begin{pmatrix}1\\-1\\ 1\end{pmatrix}e^{2t}+c_2\begin{pmatrix}1\\-2\\ -1\end{pmatrix}e^{3t}+c_3\begin{pmatrix}3\\-6\\ -2\end{pmatrix}e^{5t}},\tag{9}$$ where $c_1,c_2,c_3$ are arbitrary real constants. $\blacksquare$ #### MATLAB **Input** ``` m A = [7 -1 6;-10 4 -12;-2 1 -1]; [V,D] = eig(A) ``` **Output** ``` V = -0.42857 -0.40825 -0.57735 0.85714 0.81650 0.57735 0.28571 0.40825 0.57735 D = Diagonal Matrix 5.0000 0 0 0 3.0000 0 0 0 2.0000 ``` --- :film_frames: [20200408_1.MTS](https://reurl.cc/pd5kpa) 19:55 ### Case 2: complex eigenvalues For simplicity, suppose that $n=2$ for System (1) so that $\mathsf{A}\in\mathcal{M}_{2\times 2}(\mathbb{R})$. And suppose that the two eigenvalues of $\mathsf{A}$ are **complex conjugate pairs**, say, $\lambda=\alpha+i\beta$ and $\overline{\lambda}=\alpha-i\beta$, where $\alpha$ and $\beta$ are real. We claim that, if we let $\mathbf{v}$ be the eigenvector associated with $\lambda$, then $\overline{\mathbf{v}}$ will be the eigenvector associated with $\overline{\lambda}$. This can be verified by taking complex conjugate of Equation (4); and then one can see that $\overline{(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}}=\overline{\mathbf{0}}$ leads to $(\mathsf{A}-\overline{\lambda}\mathsf{I})\overline{\mathbf{v}}=\mathbf{0}$. Now if we substitute $\lambda=\alpha+i\beta$ and $\mathbf{v}=\mathbf{a}+i\mathbf{b}\;(\mathbf{a},\mathbf{b}\in\mathbb{R}^n)$ into the aforementioned form of linearly independent solution $\mathbf{v}e^{\lambda t}$, then a solution of System (1) is found: $$\begin{align}\mathbf{z}_1(t):=\mathbf{v}e^{\lambda t}&=(\mathbf{a}+i\mathbf{b})e^{(\alpha+i\beta)t}\\&=(\mathbf{a}+i\mathbf{b})e^{\alpha t}(\cos{\beta t}+i\sin{\beta t})\\&=e^{\alpha t}\left[(\mathbf{a}\cos\beta t-\mathbf{b}\sin\beta t)+i(\mathbf{b}\cos\beta t+\mathbf{a}\sin\beta t)\right].\end{align}\tag{10a}$$ Since $\overline{\mathbf{v}}$ is another eigenvector, we also have $$\begin{align}\mathbf{z}_2(t):=\overline{\mathbf{v}}e^{\overline{\lambda} t}&=(\mathbf{a}-i\mathbf{b})e^{(\alpha-i\beta)t}\\&=(\mathbf{a}-i\mathbf{b})e^{\alpha t}(\cos{\beta t}-i\sin{\beta t})\\&=e^{\alpha t}\left[(\mathbf{a}\cos\beta t-\mathbf{b}\sin\beta t)-i(\mathbf{b}\cos\beta t+\mathbf{a}\sin\beta t)\right],\end{align}\tag{10b}$$ which is linearly independent on $\mathbf{v}e^{\lambda t}$. :film_frames:[20200408_2.MTS](https://reurl.cc/xZ6nm5) 00:00 Despite the fact that two linearly independent solutions $\mathbf{z}_1$ and $\mathbf{z}_2$ are found, our ideal solutions are *real-valued* functions, rather than *complex-valued* ones. A proper pair of real-valued linearly independent solutions can be $$\mathbf{x}_1(t):=\dfrac{1}{2}\left(\mathbf{z}_1+\mathbf{z}_2\right)=e^{\alpha t}(\mathbf{a}\cos\beta t-\mathbf{b}\sin\beta t)\tag{11a}$$ and $$\mathbf{x}_2(t):=\dfrac{1}{2}\left(\mathbf{z}_1-\mathbf{z}_2\right)=e^{\alpha t}(\mathbf{b}\cos\beta t+\mathbf{a}\sin\beta t)\tag{11b}$$ Hence, the general solution of System (1) with $n=2$ is $$\mathbf{x}(t)=c_1\mathbf{x}_1(t)+c_2\mathbf{x}_2(t).$$ It is not necessary to memorize both (11a) and (11b), as long as we recognize that: - (11a) is the real part of either (10a) or (10b), and that - (11b) is the imaginary part of either (10a) or (10b). So the strategy to tackle System (1) in case 2 is to: 1. find one of complex-valued eigenvalues $\lambda$; and to 2. find the complex-valued eigenvector $\mathbf{v}$; and finally to 3. calculate $\Re(\mathbf{v}e^{\lambda t})$ and $\Im(\mathbf{v}e^{\lambda t})$, exactly the real-valued linearly independent solutions. ### Example 1 of Case 2 - :film_frames:[20200408_2.MTS](https://reurl.cc/xZ6nm5) 03:50 - Example 3 of Sec. 5.4, p.375 ::: warning Find a general solution of the system $$\left\{\begin{array}{l}\dfrac{dx_1}{dt}&=4x_1-3x_2\\\dfrac{dx_2}{dt}&=3x_1+4x_2\end{array}.\right.\tag{12}$$ ::: #### Solution Writing the matrix $$\mathsf{A}=\begin{pmatrix}4&-3\\3&4\end{pmatrix},$$ and solving for eignevalues with $$\begin{align}0&=\begin{vmatrix}4-\lambda&-3\\3&4-\lambda\end{vmatrix}\\&=(\lambda-4)^2+9\\&=\lambda^2-8\lambda+25,\end{align}$$ we find $\lambda=4\pm\sqrt{-9}=4\pm 3i$. For the eigenvalue $\lambda=4+3i$, the eigenvector is found by the equation $(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}=\mathbf{0}$:$$\left\{\begin{array}{rcrcr}(-3i)a&+&(-3)b&=&0\\3a&+&(-3i)b&=&0\end{array}\right.,$$ in which the two equations are dependent. If we chhose $b=i$, then $a=-1$. Thus the eignevector associated with $\lambda=4+3i$ is $\mathbf{v}=\begin{pmatrix}-1&i\end{pmatrix}^T$. And then we calculate $$\begin{align}\mathbf{v}e^{\lambda t}&=\begin{pmatrix}-1\\i\end{pmatrix}e^{(4+3i)t}=\begin{pmatrix}-1\\i\end{pmatrix}e^{4t}\left(\cos 3t+i\sin 3t \right)\\&=\underbrace{e^{4t}\begin{pmatrix}-\cos 3t\\-\sin 3t\end{pmatrix}}_{\Re(\mathbf{v}e^{\lambda t})}+i\underbrace{e^{4t}\begin{pmatrix}-\sin 3t\\\cos 3t\end{pmatrix}}_{\Im(\mathbf{v}e^{\lambda t})}.\end{align}$$ Therefore, the general solution of System (12) is $$\boxed{\mathbf{x}(t)=c_1e^{4t}\begin{pmatrix}-\cos 3t\\-\sin 3t\end{pmatrix}+c_2e^{4t}\begin{pmatrix}-\sin 3t\\\cos 3t\end{pmatrix}},\tag{13}$$ where $c_1,c_2$ are arbitrary real constants. $\blacksquare$ ### Example 2 of Case 2 - :film_frames:[20200408_2.MTS](https://reurl.cc/xZ6nm5) 13:58 - Example 3 of Sec. 5.4, p.376 ::: warning Find a general solution of the system $$\dfrac{d\mathbf{x}}{dt}=\begin{pmatrix}-0.2&0&0.2\\0.2&-0.4&0\\0&0.4&-0.2\end{pmatrix}\mathbf{x}.\tag{14}$$ ::: #### Solution After solving the secular equation of $\mathsf{A}$: $\det\left(\mathsf{A}-\lambda\mathsf{I}\right)=0$, one can find a real eignevalue $\lambda_1=0$ and a complex conjugate pair $\lambda_2=-0.4- 0.2i$, $\overline{\lambda}_2=-0.4+ 0.2i$. For $\lambda_1=0$, one can find the associated eigenvector $\mathbf{v}_1=\begin{pmatrix}2&1&2\end{pmatrix}^T$. So the first linearly independnt solution of System (13) is $$\mathbf{x}_1(t)=\begin{pmatrix}2\\1\\2\end{pmatrix}e^{0t}.$$ For $\lambda_2=-0.4- 0.2i$, one can find the associated eigenvector $\mathbf{v}_2=\begin{pmatrix}1&i&-1-i\end{pmatrix}^T$. So the rest linearly independnt solutions of System (13) is the real part and the imaginary part of $$\mathbf{z}_2(t)=\begin{pmatrix}1\\i\\-1-i\end{pmatrix}e^{(-0.4- 0.2i)t}.$$ Therefore, the general solution of System (14) is $$\begin{align}\mathbf{x}(t)&=c_1\mathbf{x}_1(t)+c_2\Re{(\mathbf{z}_2(t))}+c_3\Im{(\mathbf{z}_2(t))}\\&=\boxed{c_1\begin{pmatrix}2\\1\\2\end{pmatrix}+c_2e^{-0.4t}\begin{pmatrix}\cos 0.2t\\ \sin 0.2t\\-\cos 0.2t-\sin 0.2t\end{pmatrix}\\+c_3e^{-0.4t}\begin{pmatrix}-\sin 0.2t\\\cos 0.2t\\-\cos 0.2t+\sin 0.2t\end{pmatrix},}\end{align}\tag{15}$$ where $c_1,c_2,c_3$ are arbitrary real constants. $\blacksquare$ #### MATLAB **Input** ``` v A=[-0.2 0 0.2;0.2 -0.4 0;0 0.4 -0.2]; [V D]=eig(A) ``` **Output** ``` V = -0.66667 + 0.00000i 0.35355 + 0.35355i 0.35355 - 0.35355i -0.33333 + 0.00000i 0.35355 - 0.35355i 0.35355 + 0.35355i -0.66667 + 0.00000i -0.70711 + 0.00000i -0.70711 - 0.00000i D = Diagonal Matrix -0.00000 + 0.00000i 0 0 0 -0.40000 + 0.20000i 0 0 0 -0.40000 - 0.20000i ``` --- Sec. 5.6: Multiple Eigenvalue Solution --- ### Case 3a: "complete" multiple real eigenvalues :film_frames:[20200408_3.MTS](https://reurl.cc/ar46gY) 00:42 #### Definition ::: success 1. If an eigenvalue $\lambda$ is a $k$-fold root of Equation (3): $(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}=\mathbf{0}$, then we call it an eigenvalue of **multiplicity** $k$. (More specifically, it is called **algebraic multiplicity**, in linear algebra.) 2. If the eigenvalue $\lambda$ of multiplicity $k$ has exactly $k$ linearly independent eigenvectors that associate with it, then it is called **complete**; and thus $\left\{\mathbf{v}_ie^{\lambda t}\right\}^k_{i=1}$ are $k$ linearly independent solution of System (1). ::: ### Example of Case 3a - :film_frames:[20200408_3.MTS](https://reurl.cc/ar46gY) 04:34 - p. 393, Example 1 in Sec. 5.6 :::warning Find a general solution of $$\mathbf{x}'=\underbrace{\begin{pmatrix}9&4&0\\-6&-1&0\\6&4&3\end{pmatrix}}_\mathsf{A}\mathbf{x}.\tag{16}$$ ::: #### Solution Writing $(\mathsf{A}-\lambda \mathsf{I})\mathbf{v}=\mathbf{0}$: $$\begin{align}0&=\begin{vmatrix}9-\lambda&4&0\\-6&-1-\lambda&0\\6&4&3-\lambda\end{vmatrix}\\&=(3-\lambda)[(9-\lambda)(-1-\lambda)+24]\\&=(3-\lambda)(\lambda^2-8\lambda+15)\\&=(3-\lambda)^2(5-\lambda),\end{align}$$ we find $\lambda=5,3,3$. Thus we say that $\lambda=3$ is a eigenvalue of multiplicity 2, and that $\lambda=5$ is a eigenvalue of multiplicity 1. For $\lambda=5$, we solve the eigenvector equation $$\begin{pmatrix}4&4&0\\-6&-6&0\\6&4&-2\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix},$$ and find the associated eigenvector $\mathbf{v}_1=\begin{pmatrix}1&-1&1\end{pmatrix}^T$ and the first linear independent solution of System (16) is $\mathbf{x}_1=\begin{pmatrix}1&-1&1\end{pmatrix}^Te^{5t}$. For $\lambda=3$, we solve the eigenvector equation $$\begin{pmatrix}6&4&0\\-6&-4&0\\6&4&0\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix},$$ and find that *three equations are dependent, with two variable being underdetermined*. Hence, if we choose - $a=1$ and $c=0$, then $b=-\frac{3}{2}$, yieding ==$\mathbf{v}_2=\begin{pmatrix}1&-\frac{3}{2}&0\end{pmatrix}^T$== and the second linearly independent solution $\mathbf{x}_2=\begin{pmatrix}1&-\frac{3}{2}&0\end{pmatrix}^Te^{3t}$; - $a=0$ and $c=1$, then $b=0$, yieding ==$\mathbf{v}_3=\begin{pmatrix}0&0&1\end{pmatrix}^T$== and the third linearly independent solution $\mathbf{x}_3=\begin{pmatrix}0&0&1\end{pmatrix}^Te^{3t}$. Therefore, the general solution of System (16) is $$\boxed{\mathbf{x}(t)=c_1\begin{pmatrix}1\\-1\\1\end{pmatrix}e^{5t}+c_2\begin{pmatrix}1\\-\frac{3}{2}\\0\end{pmatrix}e^{3t}+c_3\begin{pmatrix}0\\0\\1\end{pmatrix}e^{3t}},\tag{17}$$ where $c_1,c_2,c_3$ are arbitrary real constants. *Comment*: Although the multiplicity of $\lambda=3$ is 2, we still can find 2 lineary independent solution from it. Thus, the eigenvalue $\lambda=3$ is complete. $\blacksquare$ #### MATLAB **Input** ``` v A=[9 4 0;-6 -1 0;6 4 3]; [V D]=eig(A) ``` **Output** ``` V = 0.00000 0.49614 -0.57735 0.00000 -0.74421 0.57735 1.00000 0.44721 -0.57735 D = Diagonal Matrix 3.0000 0 0 0 3.0000 0 0 0 5.0000 ``` ### Example of Case 3b - :film_frames:[20200408_3.MTS](https://reurl.cc/ar46gY) 15:34 - p. 395, Example 2 in Sec. 5.6 ::: warning Find the eigenvectors of the matrix $$\mathsf{A}=\begin{pmatrix}1&-3\\3&7\end{pmatrix}.\tag{18}$$ ::: #### Solution Solving $$\begin{align}0&=\begin{vmatrix}1-\lambda&-3\\3&7-\lambda\end{vmatrix}\\&=(1-\lambda)(7-\lambda)+9\\&=\lambda^2-8\lambda+16\\&=(\lambda-4)^2,\end{align}$$ we have the eigenvaleu $\lambda=4$ of multiplicity $k=2$. Solving $$(\mathsf{A}-4\mathsf{I})\mathbf{v}=\begin{pmatrix}-3&-3\\3&3\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix},$$ we only find $\mathbf{v}_1=\begin{pmatrix}1&-1\end{pmatrix}^T$ as the eigenvector associated with $\lambda=4$. $\blacksquare$ ### Case 3b: "defective" multiple real eigenvalues #### Definition :film_frames:[20200408_3.MTS](https://reurl.cc/ar46gY) 18:08 ::: success 3. Let $p$ denote the number of linearly independent eigenvectors associated with the eigenvalue $\lambda$ found by the eigenvalue method. Then, - if $p = k$, then eigenvalue $\lambda$ is called **complete** (this is consistent to Definition 2); - if $p < k$, then then eigenvalue $\lambda$ is called **defective**, and the number $$d=k−p$$ of "missing" eigenvectors is called the **defect** of the defective eigenvalue. ::: For example, $d=3-3=0$ in Example of “complete” multiple eigenvalues, and $d=2-1=1$ in Example of “incomplete” multiple eigenvalues. Recall the method we used in solving linear homogeneous equaitons. For instance, given $y''-8y'+16y=0$, and knowing that the roots of its characteristic equation are $r=4,4$, we use the linearly independent solutions $e^{4y}$ and $te^{4y}$ to write the general solutions: $$y(t)=c_1e^{4t}+c_2te^{4t}.$$ :film_frames:[20200408_3.MTS](https://reurl.cc/ar46gY) 23:22 Inspiring by this method, we continue on finding another eigenvector associated with a defective eigenvalue. 1. **Trial 1** Imitating the solution of form $te^{rt}$, we first consider $$\mathbf{x}_2(t)=\mathbf{v}_1te^{\lambda t},\tag{19}$$ where $\mathbf{v}_1$ is a *nonzero* eigenvector of $\mathsf{A}$, associated with $\lambda$, and thus we have $$\mathbf{x}_2'(t)=\mathbf{v}_1e^{\lambda t}+\lambda \mathbf{v}_1te^{\lambda t},$$ such that such that $\mathbf{x}'=\mathsf{A}\mathbf{x}$ becomes $$\mathbf{v}_1e^{\lambda t}+\lambda \mathbf{v}_1te^{\lambda t}=\mathsf{A}\mathbf{v}_1te^{\lambda t},$$ or $$\mathbf{v}_1+\cancel{\lambda \mathbf{v}_1t}=\cancel{\mathsf{A}\mathbf{v}_1t}$$ in which nonvanishing $e^{\lambda t}$ was cancelled. Unfortunately, the above equation has no solution other than $\mathbf{v}_1=\mathbf{0}$ because we can still cancel the terms due to the fact that $\mathsf{A}\mathbf{v}_1=\lambda\mathbf{v}_1$. 2. **Trial 2** Provided that $\mathbf{v}_1$ is, as mentioned, a *nonzero* eigenvector of $\mathsf{A}$ associated with $\lambda$, now we assume another *nonzero* eigenvector $\mathbf{v}_2$, also associated with $\lambda$, and reconsider the comination $$\mathbf{x}_2(t)=(\mathbf{v}_1t+\mathbf{v}_2)e^{\lambda t}=\mathbf{v}_1te^{\lambda t}+\mathbf{v}_2e^{\lambda t},\tag{20}$$, and then we have $$\mathbf{x}_2'(t)=\mathbf{v}_1e^{\lambda t}+\lambda\mathbf{v}_1te^{\lambda t}+\lambda \mathbf{v}_2e^{\lambda t},$$ such that $\mathbf{x}'=\mathsf{A}\mathbf{x}$ becomes $$\require{cancel}\mathbf{v}_1e^{\lambda t}+\lambda\mathbf{v}_1te^{\lambda t}+\lambda \mathbf{v}_2e^{\lambda t}=\mathsf{A}\mathbf{v}_1te^{\lambda t}+\mathsf{A}\mathbf{v}_2e^{\lambda t},$$ which, after collecting terms, yields :film_frames:[20200408_4.MTS](https://reurl.cc/62QpRk) 00:00$$(\mathbf{v}_1+\lambda \mathbf{v}_2)e^{\lambda t}+\cancel{(\lambda\mathbf{v}_1)te^{\lambda t}}=(\mathsf{A}\mathbf{v}_2)e^{\lambda t}+\cancel{(\mathsf{A}\mathbf{v}_1)te^{\lambda t}},$$ in which the terms of $te^{\lambda t}$ are cancelled due to the fact that $\mathsf{A}\mathbf{v}_1=\lambda\mathbf{v}_1$. After the equation is divided by nonvanishing $e^{\lambda t}$, we are left with $$\mathbf{v}_1+\lambda\mathbf{v}_2=\mathsf{A}\mathbf{v}_2$$ or $$\left(\mathsf{A}-\lambda\mathsf{I}\right)\mathbf{v}_2=\mathbf{v}_1.\tag{21}$$ The function $\mathbf{x}_2=(\mathbf{v}_1t+\mathbf{v}_2)e^{\lambda t}$ is a solution of System (1) if and only if $\mathbf{v}_1$ satisfies Equation (21). In conclusion, in the case $d=k-p=1$, the two eigenvectors associated with the multiple eigenvalue $\lambda$ are: 1. ==$\mathbf{x}_1(t)=\mathbf{v}_1e^{\lambda t}$==, where $\mathbf{v}_1$ satisfies $$\left(\mathsf{A}-\lambda\mathsf{I}\right)\mathbf{v}_1=\mathbf{0};$$ and 2. ==$\mathbf{x}_2(t)=(\mathbf{v}_1t+\mathbf{v}_2) e^{\lambda t}$==, where $\mathbf{v}_2$ satisfies $$\left(\mathsf{A}-\lambda\mathsf{I}\right)\mathbf{v}_2=\mathbf{v}_1$$ or (see Note at :film_frames:[20200408_4.MTS](https://reurl.cc/62QpRk) 09:45-13:11) $$\left(\mathsf{A}-\lambda\mathsf{I}\right)^2\mathbf{v}_2=\mathbf{0}.\tag{22}$$ $\mathbf{v}_2$ is also called a **generalized eigenvector** or an **eigenvector of rank** $\boldsymbol2$ of $\mathsf{A}$. ![](https://i.imgur.com/FhEra8R.png) ### Example of Case 3b (Continued) :film_frames:[20200408_4.MTS](https://reurl.cc/62QpRk) 03:16 ::: warning Given the multiple eigenvalue $\lambda=4$ and its associated eigenvector $\mathbf{v}_1=\begin{pmatrix}1&-1\end{pmatrix}^T$ of the matrix $$\mathsf{A}=\begin{pmatrix}1&-3\\3&7\end{pmatrix}, \tag{18}$$ find the other eigenvector of $\mathsf{A}$. ::: #### Solution Let $\mathbf{x}_2(t)=\begin{pmatrix}1&-1\end{pmatrix}^Tte^{4t}+\underbrace{\begin{pmatrix}a&b\end{pmatrix}}_{\mathbf{v}_2}e^{4t}$, where $\mathbf{v}_2$ satisfies $\left(\mathsf{A}-4\mathsf{I}\right)\mathbf{v}_2=\mathbf{v}_1$ or $$\begin{pmatrix}-3&-3\\3&3\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}=\begin{pmatrix}1\\-1\end{pmatrix}.$$ There follows $-3a-3b=1$ and if we choose $a=-\frac{1}{3}$, than $b=0$. Then we can write the second independent solutions: $$\mathbf{x}_2(t)=\begin{pmatrix}1\\-1\end{pmatrix}te^{4t}+\begin{pmatrix}-\frac{1}{3}\\0\end{pmatrix}e^{4t}=\begin{pmatrix}t-\frac{1}{3}\\-t\end{pmatrix}e^{4t}.$$ Therefore the general solution for System (1) in which $\mathsf{A}$ is given by (18) is $$\begin{align}\mathbf{x}(t)&=c_1\begin{pmatrix}1\\-1\end{pmatrix}e^{4t}+c_2\begin{pmatrix}t-\frac{1}{3}\\-t\end{pmatrix}e^{4t}\\&=\boxed{\begin{pmatrix}e^{4t}\left(c_2t+c_1-\frac{1}{3}c_2\right)\\e^{4t}\left(-c_2t+-c_1\right)\end{pmatrix}}.\blacksquare\end{align}$$ ### Summary :film_frames:[20200408_5.MTS](https://reurl.cc/b5D4RM) 00:00 | Multiplicity | Defect |Eigenvec. eqn.| L.I. solutions | |:------------:|:-----------------:|:------:| -------- | | $k=2$ | $d=1$ | $\require{color}(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_1=\mathbf{0}\\(\mathsf{A}-\lambda\mathsf{I})^2\mathbf{v}_2=\mathbf{0}$ | $\mathbf{x}_1(t)=\mathbf{v}_1e^{\lambda t}\\\color{red}{\mathbf{x}_2(t)=(\mathbf{v}_1t+\mathbf{v}_2)e^{\lambda t}}$ | | $k=2$ | $d=0$ | $(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_1=\mathbf{0}\\(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_2=\mathbf{0}$ | $\mathbf{x}_1(t)=\mathbf{v}_1e^{\lambda t}\\\mathbf{x}_2(t)=\mathbf{v}_2e^{\lambda t}$ | | Multiplicity | Defect |Eigenvec. eqn.| L.I. solutions | |:------------:|:------:|:------:| ------------------------------------------------------------------------------------------------------ | | $k=3$ | $d=2$ | $(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_1=\mathbf{0}\\(\mathsf{A}-\lambda\mathsf{I})^2\mathbf{v}_2=\mathbf{0}\\(\mathsf{A}-\lambda\mathsf{I})^3\mathbf{v}_3=\mathbf{0}$ | $\mathbf{x}_1(t)=\mathbf{v}_1e^{\lambda t}\\\mathbf{x}_2(t)=(\mathbf{v}_1t+\mathbf{v}_2)e^{\lambda t}\\\color{red}{\mathbf{x}_3(t)=(\frac{1}{2}\mathbf{v}_1t^2+\mathbf{v}_2t+\mathbf{v}_3)e^{\lambda t}}$ | | $k=3$ | $d=1$ | ? | ?| | $k=3$ | $d=0$ | $(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_1=\mathbf{0}\\(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_2=\mathbf{0}\\(\mathsf{A}-\lambda\mathsf{I})\mathbf{v}_3=\mathbf{0}$ |$\mathbf{x}_1(t)=\mathbf{v}_1e^{\lambda t}\\\mathbf{x}_2(t)=\mathbf{v}_2e^{\lambda t}\\\mathbf{x}_3(t)=\mathbf{v}_3e^{\lambda t}$ | ### Example of Case 3b with $k=3$, $d=2$ - :film_frames:[20200408_5.MTS](https://reurl.cc/b5D4RM) 07:21 - p.399, Example 4 of Sec. 5.6 ::: warning Find three linearly independent solutions of the system $$\mathbf{x}'=\underbrace{\begin{pmatrix}0&1&2\\-5&-3&-7\\1&0&0\end{pmatrix}}_\mathsf{A}\mathbf{x}.\tag{23}$$ ::: #### Solution The secular equation of $\mathsf{A}$ is $$\begin{align}0&=\begin{vmatrix}0-\lambda&1&2\\-5&-3-\lambda&-7\\1&0&-\lambda\end{vmatrix}=-(\lambda+1)^3.\end{align}$$So $\mathsf{A}$ has the eigenvalue $\lambda=-1$ of multiplicity 3. Solving $(\mathsf{A}+\mathsf{I})\mathbf{v}_1=\mathbf{0}$ or $$\begin{pmatrix}1&1&2\\-5&-2&-7\\1&0&1\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix},$$ we find the third row gives $c=-a$ and the first row $a+b+2c=0$ gives $b=a$. So the only assoicated eigenvector is $\mathbf{v}_1=\begin{pmatrix}1&1&-1\end{pmatrix}^T$ and the only linearly independent solution we've found is $$\mathbf{x}_1(t)=\boxed{\begin{pmatrix}1\\1\\-1\end{pmatrix}e^{-t}};\tag{24}$$ this tells us that $p=1$ and dectect $d=2$. For the second L.I. solution, we consider the equation $(\mathsf{A}+\mathsf{I})\mathbf{v}_2=\mathbf{v}_1$ or $$\begin{pmatrix}1&1&2\\-5&-2&-7\\1&0&1\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}1\\1\\-1\end{pmatrix}.$$ This time, we have $\mathbf{v}_2=\begin{pmatrix}-1&2&0\end{pmatrix}^T$ and the second L.I. solution $$\mathbf{x}_2(t)=\boxed{\begin{pmatrix}1\\1\\-1\end{pmatrix}te^{-t}+\begin{pmatrix}-1\\2\\0\end{pmatrix}e^{-t}}.\tag{25}$$ For the third L.I. solution, we consider the equation $(\mathsf{A}+\mathsf{I})\mathbf{v}_3=\mathbf{v}_2$ or $$\begin{pmatrix}1&1&2\\-5&-2&-7\\1&0&1\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}-1\\2\\0\end{pmatrix}.$$ We can take $\mathbf{v}_3=\begin{pmatrix}0&-1&0\end{pmatrix}^T$ the third L.I. solution $$\mathbf{x}_3(t)=\boxed{\dfrac{1}{2}\begin{pmatrix}1\\1\\-1\end{pmatrix}t^2e^{-t}+\begin{pmatrix}-1\\2\\0\end{pmatrix}te^{-t}+\begin{pmatrix}0\\-1\\0\end{pmatrix}e^{-t}}.\tag{26}$$ (connection error) :film_frames:[20200408_5.MTS](https://reurl.cc/b5D4RM) 07:21 (after reconnetion) :film_frames:[20200408_6.MTS](https://reurl.cc/QdenA5) 00:00 Therefore, the general solution of System (23) is the combination of solutions (24), (25), and (26): $$\begin{align}\mathbf{x}(t)&=c_1\mathbf{x}_1(t)+c_2\mathbf{x}_3(t)+c_3\mathbf{x}_3(t)\\&=\boxed{c_1\begin{pmatrix}1\\1\\-1\end{pmatrix}e^{-t}+c_2\begin{pmatrix}t-1\\t+2\\-t\end{pmatrix}e^{-t}+c_3\begin{pmatrix}\frac{1}{2}t^2-t\\\frac{1}{2}t^2+2t-1\\-\frac{1}{2}t^2\end{pmatrix}e^{-t}},\end{align}\tag{27}$$ where $c_1,c_2,c_3$ are arbitrary real constants.

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully