or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Syncing
xxxxxxxxxx
AI / ML領域相關學習筆記入口頁面
Deeplearning.ai GenAI/LLM系列課程筆記
Generative AI with Large Language Models
- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →課程概要
Week1 - 生成式AI應用案例、項目生命周期與模型預訓練
Generative AI use cases, project lifecycle, and model pre-training
1-1. Introduction to LLMs and the generative Al project lifecycle
生成式AI應用案例、項目生命周期與模型預訓練 (Generative AI use cases, project lifecycle, and model pre-training)
大型語言模型的使用案例與任務 (LLM use cases and tasks)
大型語言模型(LLMs)應用範圍
提示(Prompt)與生成
LLMs的進階互動與微調
Transformers架構之前的文本生成 (Text generation before transformers)
RNN



自然語言的複雜性
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →Transformer架構出現產生了革命性變化
2017年,Google和多倫多大學發表的論文《Attention is All You Need》後,一切改變,引入了Transformers架構,其能有效擴展以使用多核心GPU, 平行處理輸入數據,利用更大的訓練數據集,關鍵在於能學習關注其處理詞語的含義
Transformers架構 (Transformers architecture)
詳細筆記見[Transformer] Self-Attention與Transformer
Self-attention










轉換器架構的結構
處理文本的過程
自注意力層的作用
多頭自注意力的概念
輸出處理
使用Transformers架構生成文本 (Generating text with transformers)
翻譯任務範例
輸出預測的多種方式
Transformers架構總結
模型類型
課程目標
提示與提示工程 (Prompting and prompt engineering)
基本術語
提示工程(Prompt Engineering)
在上下文中學習(In-Context Learning,ICL)
通過在提示中包含範例或額外數據幫助LLMs學習任務
生成配置 (Generative configuration)
生成式AI項目生命周期 (Generative AI project lifecycle)
AWS實驗室介紹 (Introduction to AWS labs)
Lab 1 - 生成式AI使用案例:對話摘要 (Lab 1 - Generative AI Use Case: Summarize Dialogue)
Lab 1 - Generative AI Use Case: Summarize Dialogue。生成式AI使用案例:對話摘要
1-2. LLM pre-training and scaling laws
大型語言模型的預訓練 (Pre-training large language models)
訓練大型語言模型的計算挑戰 (Computational challenges of training LLMs)
[選修:高效的多GPU計算策略 (Optional video: Efficient multi-GPU compute strategies)]
擴展法則與計算最優模型 (Scaling laws and compute-optimal models)
領域適應的預訓練 (Pre-training for domain adaptation)
領域特定訓練:BloombergGPT (Domain-specific training: BloombergGPT)
第一週測驗 (Week 1 quiz)