Anton Nekrutenko
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- tags: BMMB554-23 --- [![](https://imgs.xkcd.com/comics/seven.png)](https://xkcd.com/2483) # Lecture 7: Python 3 - A more careful look at lists and dictionaries ----- Preclass prep: Chapters [5](https://greenteapress.com/thinkpython2/html/thinkpython2009.html) and [7](https://greenteapress.com/thinkpython2/html/thinkpython2011.html) from "Think Python" :::warning This material uses examples from notebooks developed by [Ben Langmead](https://langmead-lab.org/teaching-materials/) and BioPython Cookbook. ::: ## Prep 1. Start [JupyterLab](https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/try.jupyter.org?urlpath=lab) 2. Within JupyterLab start a new Python3 notebook 3. Open [this page](http://cs1110.cs.cornell.edu/tutor/#mode=edit) in a new browser tab ## Lists: Dynamic programming in sequence alignment An excellent way to illustrate the utility of lists is to implement dynamic programming algorithm for sequence alignment. Suppose we have two sequences that deliberately have different lengths: $\texttt{G C T A T A C}$ and $\texttt{G C G T A T G C}$ Let's represent them as the following matrix where the first character $\epsilon$ represents an empty string: $$ \begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon \\ \hline G\\ \hline C\\ \hline G\\ \hline T\\ \hline A\\ \hline T\\ \hline G\\ \hline C \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal. $$ In this matrix the cells are addressed as shown below. They filled using the following logic: $$ D[i,j] = min\begin{cases} \color{green}{D[i-1,j] + 1} & \\ \color{blue}{D[i,j-1] + 1} & \\ \color{red}{D[i-1,j-1] + \delta(x[i-1],y[j-1])} \end{cases} $$ where $\color{green}{green}$ is *upper* cell, $\color{blue}{blue}$ is *left* cell, and $\color{red}{red}$ is *upper-left* cell: $$ \begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & & & & & & & & \\ \hline G & \\ \hline C & & & \color{red}{D[2,2]} & \color{green}{D[2,3]}\\ \hline G & & & \color{blue}{D[3,2]} & D[3,3]\\ \hline T & \\ \hline A & \\ \hline T & \\ \hline G & \\ \hline C & \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal. $$ Let's initialize the first column and first raw of the matrix. Because the distance between a string and an empty string is equal to the length of the string (e.g., a distance between, say, string $\texttt{TCG}$ and an empty string is 3) this resulting matrix will look like this: $$ \begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & 1\\ \hline C & 2\\ \hline G & 3\\ \hline T & 4\\ \hline A & 5\\ \hline T & 6\\ \hline G & 7\\ \hline C & 8 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal. $$ This can be achieved with the following code: ```python= D = np.zeros((len(x)+1, len(y)+1), dtype=int) D[0, 1:] = range(1, len(y)+1) D[1:, 0] = range(1, len(x)+1) ``` Now we can fill the entire matrix by using two nested loops: one iterating over $i$ coordinate (sequence $x$) and the other iterating over $j$ coordinate (sequence $y$): ```python= for i in range(1, len(x)+1): for j in range(1, len(y)+1): delt = 1 if x[i-1] != y[j-1] else 0 D[i, j] = min(D[i-1, j-1]+delt, D[i-1, j]+1, D[i, j-1]+1) ``` Let's start with the cell between $\texttt{G}$ and $\texttt{G}$. Recall that: $$ D[i,j] = min\begin{cases} \color{green}{D[i-1,j] + 1} & \\ \color{blue}{D[i,j-1] + 1} & \\ \color{red}{D[i-1,j-1] + \delta(x[i-1],y[j-1])} \end{cases} $$ where $\delta(x[i-1],y[j-1]) = 0$ if $x[i-1] = y[j-1]$ and $1$ otherwise. And now let's color each of the cells corresponding to each part of the above expression: $$ \begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & \color{red}0 & \color{green}1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & \color{blue}1\\ \hline C & 2\\ \hline G & 3\\ \hline T & 4\\ \hline A & 5\\ \hline T & 6\\ \hline G & 7\\ \hline C & 8 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal. $$ In this specific case: $$ D[i,j] = min\begin{cases} \color{green}{D[i-1,j] + 1}\ or\ 0+0=0 & \\ \color{blue}{D[i,j-1] + 1}\ or\ 1+1=2 & \\ \color{red}{D[i-1,j-1] + \delta(x[i-1],y[j-1])}\ or\ 1+1=2 \end{cases} $$ The minimum of 0, 2, and 2 will be 0, so we are putting zero into that cell: $$ \begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & \color{red}0 & \color{green}1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & \color{blue}1 & \color{red}0\\ \hline C & 2\\ \hline G & 3\\ \hline T & 4\\ \hline A & 5\\ \hline T & 6\\ \hline G & 7\\ \hline C & 8 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal. $$ Using this logic we can fill the entire matrix like this: $$ \begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6\\ \hline C & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5\\ \hline G & 3 & 2 & 1 & 1 & 2 & 3 & 4 & 5\\ \hline T & 4 & 3 & 2 & 1 & 2 & 2 & 3 & 4\\ \hline A & 5 & 4 & 3 & 2 & 1 & 2 & 2 & 3\\ \hline T & 6 & 5 & 4 & 3 & 2 & 1 & 2 & 3\\ \hline G & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 3\\ \hline C & 8 & 7 & 6 & 5 & 4 & 3 & 3 & \color{red}2 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal. $$ The lower rightmost cell highlighted in red is special. It contains the value for the edit distance between the two strings. The following Python script implements this idea. You can see that it is essentially instantaneous: ```python= import numpy as np def edDistDp(x, y): """ Calculate edit distance between sequences x and y using matrix dynamic programming. Return matrix and distance. """ D = np.zeros((len(x)+1, len(y)+1), dtype=int) D[0, 1:] = range(1, len(y)+1) D[1:, 0] = range(1, len(x)+1) for i in range(1, len(x)+1): for j in range(1, len(y)+1): delt = 1 if x[i-1] != y[j-1] else 0 D[i, j] = min(D[i-1, j-1]+delt, D[i-1, j]+1, D[i, j-1]+1) return D,D[len(x),len(y)] ``` A graphical representation of the matrix between `GCGTATGCACGC` and `GCTATGCCACGC` looks like this: ![](https://i.imgur.com/veMfPFt.png) This image is generated using [Seaborn](https://seaborn.pydata.org/index.html) package using matrix directly: ```python= sns.heatmap(D,annot=True,cmap="crest") ``` ------ ## Dictionaries: Translating sequences Perhaps the best way to demonstrate the utility of dictionaries is using the translation example. The universal genetic code can be represented as the following dictionary: # Using dictionaries to translare DNA ## Define and use translation table The following dictionary maps codons to corresponding amino acid translations. In this case codon is the *key* and amino acid is the *value*: ```python= table = { 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_', 'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W', } ``` Let's generate random DNA sequence: ```python= import random seq = "".join([random.choice('atcg') for x in range(100)]) ``` ```python= seq ``` 'agaccgtagcccaagtgcgtttgaatgtggctacttgggaggatttcattgcggtctgtctccgtacttgttattggtcttctttctgcattatgacgca' To translate this sequence we write a code that uses a `for` loop that iterates over the DNA sequence in steps of 3, creating a codon at each iteration. If the codon is less than 3 letters long, the loop is broken. The resulting amino acid is then added to the `translation` string: ```python= translation = "" for i in range(0, len(seq), 3): codon = seq[i:i+3].upper() if len(codon) < 3: break if codon in table: translation += table[codon] else: translation += "X" print("Translation:", translation) ``` Translation: RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R Note that the code uses the `upper()` method to ensure the codon is in uppercase, since the table dictionary is case sensitive. Additionally, the code checks if the codon is in the table dictionary, and if not, it adds the letter "X" to the translation. This is a common way to represent unknown or stop codons in a protein sequence. ```python= translation ``` 'RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R' Now we define a function that would perform translation so that we can reuse it later: ```python= def translate(seq): translation = '' table = { 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_', 'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W', } for i in range(0, len(seq), 3): codon = seq[i:i+3].upper() if len(codon) < 3: break if codon in table: translation += table[codon] else: translation += "X" return(translation) ``` ```python= translate(seq) ``` 'RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R' We can further modify the function by adding a `phase` parameter that would allow translating in any of the three phases: ```python= def translate_phase(seq,phase): translation = '' table = { 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_', 'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W', } assert phase >= 0 and phase <= 3, "Phase parameter can only be set to 0, 1, or 2! You specified {}".format(phase) for i in range(phase, len(seq), 3): codon = seq[i:i+3].upper() if len(codon) < 3: break if codon in table: translation += table[codon] else: translation += "X" return(translation) ``` ```python= translate_phase(seq,2) ``` 'TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT' To translate in all six reading franes (three of the "+" strand and three of the "-" strand) we need to be able to create a reverse complement of the sequence. Let's wrire a simple function for that. The cell below implements a function `revcomp` that takes a DNA sequence as input and returns its reverse complement. It works by first reversing the sequence using the slice notation `seq[::-1]`, which returns the sequence in reverse order. Then, the `translate` method is used with the `str.maketrans` function to replace each occurrence of 'a', 't', 'g', 'c', 'A', 'T', 'G', and 'C' in the reversed sequence with 't', 'a', 'c', 'g', 'T', 'A', 'C', and 'G', respectively: ```python= import string def revcomp(seq): return seq[::-1].translate(str.maketrans('atgcATCG','tagcTACG')) ``` Now let's use this function to create translation in all six reading frames. The cell below uses a `for` loop that iterates over the range `(0, 3)`, representing the different phases (or starting positions) of the translation. At each iteration, the `translate_phase` function is called with the DNA sequence and the current phase, and the resulting protein sequence is appended to the `translations` list along with the `phase` and the `strand` orientation (+ or -): ```python= translations = [] for i in range(0,3): translations.append((translate_phase(seq,i),str(i),'+')) translations.append((translate_phase(revcomp(seq),i),str(i),'-')) ``` ```python= translations ``` [('RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R', '0', '+'), ('SLIIDKQQE_ELATDRRIKWWELRRLKASSRSL', '0', '-'), ('DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA', '1', '+'), ('R__STNNRNKN_PQTGESNGGNYGD_KRVPVAC', '1', '-'), ('TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT', '2', '+'), ('ADNRQTTGIRTSHRQANQMVGTTEIESEFP_P', '2', '-')] ## Finding coordinates of continuous translations The translation we've generated above contain stops (e.g., `_` symbols). The actual biologically relevant protein sequences are between stops. We now need to split translation strings into meaningful peptide sequences and combite their coordinates. Let's begin by splitting a string on `_` and computing start and end positions of each peptide: ```python= string = "aadsds_dsds_dsds" split_indices = [] for i,char in enumerate(string): if char == "_": split_indices.append(i) print(split_indices) ``` [6, 11] The code above generates a list of split indices for a string. The list contains the indices of the characters in the string that match a specified character (in this case, the underscore `_` character). The `enumerate` function is used to loop over the characters in the string, and at each iteration, the current index and character are stored in the variables `i` and `char`, respectively. If the current character matches the specified character, the index `i` is appended to the `split_indices` list. After the loop, the `split_indices` list is printed to the console. For the input string `"aadsds_dsds_dsds"`, the output would be `[6, 11]`, indicating that the dashes are located at indices 6 and 11. But we actually need coordinates of peptides bound by `_` characters. To get to this let's first modify `split_indices` by adding beginning and end: ```python= string = "aadsds_dsds_dsds" split_indices = [] for i,char in enumerate(string): if char == "_": split_indices.append(i) split_indices.insert(0,-1) split_indices.append(len(string)) print(split_indices) ``` [-1, 6, 11, 16] Now, let's convert these to ranges and also stick the peptide sequence in: ```python= string = "aadsds_dsds_dsds" split_indices = [] for i,char in enumerate(string): if char == "_": split_indices.append(i) split_indices.insert(0,-1) split_indices.append(len(string)) orfs = string.split('_') parts = [] for i in range(len(split_indices)-1): parts.append((orfs[i],split_indices[i]+1, split_indices[i+1])) print(parts) ``` [('aadsds', 0, 6), ('dsds', 7, 11), ('dsds', 12, 16)] Now let's convert this to function: ```python= def extract_coords(translation): split_indices = [] for i,char in enumerate(translation): if char == "_": split_indices.append(i) split_indices.insert(0,-1) split_indices.append(len(translation)) parts = [] for i in range(len(split_indices)-1): parts.append((translation.split('_')[i], split_indices[i]+1, split_indices[i+1])) return(parts) ``` ```python= extract_coords(string) ``` [('aadsds', 0, 6), ('dsds', 7, 11), ('dsds', 12, 16)] And specify right parameters to make it truly generic: ```python= def extract_coords_with_annotation(separator,translation,phase,strand): split_indices = [] for i,char in enumerate(translation): if char == separator: split_indices.append(i) split_indices.insert(0,-1) split_indices.append(len(translation)) parts = [] for i in range(len(split_indices)-1): parts.append((translation.split(separator)[i], phase, strand, split_indices[i]+1, split_indices[i+1])) return(parts) ``` ```python= extract_coords_with_annotation('_',string,'0','+') ``` [('aadsds', '0', '+', 0, 6), ('dsds', '0', '+', 7, 11), ('dsds', '0', '+', 12, 16)] ## Analyzing all translations of a given sequence We begin by parsing the `translations` list we defined above: ```python= all_translations = [] for item in translations: all_translations.append(extract_coords_with_annotation('_',item[0],item[1],item[2])) ``` ```python= all_translations ``` [[('RP', '0', '+', 0, 2), ('PKCV', '0', '+', 3, 7), ('MWLLGRISLRSVSVLVIGLLSAL', '0', '+', 8, 31), ('R', '0', '+', 32, 33)], [('SLIIDKQQE', '0', '-', 0, 9), ('ELATDRRIKWWELRRLKASSRSL', '0', '-', 10, 33)], [('DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA', '1', '+', 0, 33)], [('R', '1', '-', 0, 1), ('', '1', '-', 2, 2), ('STNNRNKN', '1', '-', 3, 11), ('PQTGESNGGNYGD', '1', '-', 12, 25), ('KRVPVAC', '1', '-', 26, 33)], [('TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT', '2', '+', 0, 32)], [('ADNRQTTGIRTSHRQANQMVGTTEIESEFP', '2', '-', 0, 30), ('P', '2', '-', 31, 32)]] Now the problem with this list is that it is nested. However, we need to make it flat: ```python= flat_list = [] for sublist in all_translations: for item in sublist: flat_list.append(item) ``` ```python= flat_list ``` [('RP', '0', '+', 0, 2), ('PKCV', '0', '+', 3, 7), ('MWLLGRISLRSVSVLVIGLLSAL', '0', '+', 8, 31), ('R', '0', '+', 32, 33), ('SLIIDKQQE', '0', '-', 0, 9), ('ELATDRRIKWWELRRLKASSRSL', '0', '-', 10, 33), ('DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA', '1', '+', 0, 33), ('R', '1', '-', 0, 1), ('', '1', '-', 2, 2), ('STNNRNKN', '1', '-', 3, 11), ('PQTGESNGGNYGD', '1', '-', 12, 25), ('KRVPVAC', '1', '-', 26, 33), ('TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT', '2', '+', 0, 32), ('ADNRQTTGIRTSHRQANQMVGTTEIESEFP', '2', '-', 0, 30), ('P', '2', '-', 31, 32)] Now we can load the list into `Pandas` and plot away: ```python= import pandas as pd df = pd.DataFrame(flat_list,columns=['aa','frame','phase','start','end']) ``` ```python= df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>aa</th> <th>frame</th> <th>phase</th> <th>start</th> <th>end</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>RP</td> <td>0</td> <td>+</td> <td>0</td> <td>2</td> </tr> <tr> <th>1</th> <td>PKCV</td> <td>0</td> <td>+</td> <td>3</td> <td>7</td> </tr> <tr> <th>2</th> <td>MWLLGRISLRSVSVLVIGLLSAL</td> <td>0</td> <td>+</td> <td>8</td> <td>31</td> </tr> <tr> <th>3</th> <td>R</td> <td>0</td> <td>+</td> <td>32</td> <td>33</td> </tr> <tr> <th>4</th> <td>SLIIDKQQE</td> <td>0</td> <td>-</td> <td>0</td> <td>9</td> </tr> <tr> <th>5</th> <td>ELATDRRIKWWELRRLKASSRSL</td> <td>0</td> <td>-</td> <td>10</td> <td>33</td> </tr> <tr> <th>6</th> <td>DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA</td> <td>1</td> <td>+</td> <td>0</td> <td>33</td> </tr> <tr> <th>7</th> <td>R</td> <td>1</td> <td>-</td> <td>0</td> <td>1</td> </tr> <tr> <th>8</th> <td></td> <td>1</td> <td>-</td> <td>2</td> <td>2</td> </tr> <tr> <th>9</th> <td>STNNRNKN</td> <td>1</td> <td>-</td> <td>3</td> <td>11</td> </tr> <tr> <th>10</th> <td>PQTGESNGGNYGD</td> <td>1</td> <td>-</td> <td>12</td> <td>25</td> </tr> <tr> <th>11</th> <td>KRVPVAC</td> <td>1</td> <td>-</td> <td>26</td> <td>33</td> </tr> <tr> <th>12</th> <td>TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT</td> <td>2</td> <td>+</td> <td>0</td> <td>32</td> </tr> <tr> <th>13</th> <td>ADNRQTTGIRTSHRQANQMVGTTEIESEFP</td> <td>2</td> <td>-</td> <td>0</td> <td>30</td> </tr> <tr> <th>14</th> <td>P</td> <td>2</td> <td>-</td> <td>31</td> <td>32</td> </tr> </tbody> </table> </div> ```python= import altair as alt plus = alt.Chart(df[df['phase']=='+']).mark_rect().encode( x = alt.X('start:Q'), x2 = alt.X2('end:Q'), y = alt.Y('frame:N'), color='frame', tooltip='aa:N' ).properties( width=600, height=100) minus = alt.Chart(df[df['phase']=='-']).mark_rect().encode( x = alt.X('start:Q',sort=alt.EncodingSortField('start:Q', order='descending')), x2 = alt.X2('end:Q'), y = alt.Y('frame:N'), color='frame', tooltip='aa:N' ).properties( width=600, height=100) plus & minus ``` ```vega { "config": {"view": {"continuousWidth": 400, "continuousHeight": 300}}, "vconcat": [ { "data": {"name": "data-469e9fe221acf63f14944504f41743eb"}, "mark": "rect", "encoding": { "color": {"field": "frame", "type": "nominal"}, "tooltip": {"field": "aa", "type": "nominal"}, "x": {"field": "start", "type": "quantitative"}, "x2": {"field": "end"}, "y": {"field": "frame", "type": "nominal"} }, "height": 100, "width": 600 }, { "data": {"name": "data-80bd80655a31c6aeabbc25549c6683a8"}, "mark": "rect", "encoding": { "color": {"field": "frame", "type": "nominal"}, "tooltip": {"field": "aa", "type": "nominal"}, "x": { "field": "start", "sort": {"field": "start:Q", "order": "descending"}, "type": "quantitative" }, "x2": {"field": "end"}, "y": {"field": "frame", "type": "nominal"} }, "height": 100, "width": 600 } ], "$schema": "https://vega.github.io/schema/vega-lite/v4.17.0.json", "datasets": { "data-469e9fe221acf63f14944504f41743eb": [ {"aa": "RP", "frame": "0", "phase": "+", "start": 0, "end": 2}, {"aa": "PKCV", "frame": "0", "phase": "+", "start": 3, "end": 7}, { "aa": "MWLLGRISLRSVSVLVIGLLSAL", "frame": "0", "phase": "+", "start": 8, "end": 31 }, {"aa": "R", "frame": "0", "phase": "+", "start": 32, "end": 33}, { "aa": "DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA", "frame": "1", "phase": "+", "start": 0, "end": 33 }, { "aa": "TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT", "frame": "2", "phase": "+", "start": 0, "end": 32 } ], "data-80bd80655a31c6aeabbc25549c6683a8": [ {"aa": "SLIIDKQQE", "frame": "0", "phase": "-", "start": 0, "end": 9}, { "aa": "ELATDRRIKWWELRRLKASSRSL", "frame": "0", "phase": "-", "start": 10, "end": 33 }, {"aa": "R", "frame": "1", "phase": "-", "start": 0, "end": 1}, {"aa": "", "frame": "1", "phase": "-", "start": 2, "end": 2}, {"aa": "STNNRNKN", "frame": "1", "phase": "-", "start": 3, "end": 11}, { "aa": "PQTGESNGGNYGD", "frame": "1", "phase": "-", "start": 12, "end": 25 }, {"aa": "KRVPVAC", "frame": "1", "phase": "-", "start": 26, "end": 33}, { "aa": "ADNRQTTGIRTSHRQANQMVGTTEIESEFP", "frame": "2", "phase": "-", "start": 0, "end": 30 }, {"aa": "P", "frame": "2", "phase": "-", "start": 31, "end": 32} ] } } ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully