Stanley Chueh
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # LeRobot Documentation Source: LeRobot Official Github: https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md ## LeRobot latest example Teleoperation: ``` cd ~/CSL/lerobot_nn conda activate lerobot_nn python -m lerobot.teleoperate --robot.type=koch_follower --robot.port=/dev/ttyUSB_follower --robot.id=my_awesome_follower_arm --robot.cameras="{ front: {type: opencv, index_or_path: /dev/video6, width: 640, height: 480, fps: 30}, top: {type: opencv, index_or_path: /dev/video4, width: 640, height: 480, fps: 30}}" --teleop.type=koch_leader --teleop.port=/dev/ttyUSB_leader --teleop.id=my_awesome_leader_arm --display_data=true ``` ## Try it First! Teleoperation: ``` cd ~/CSL conda activate /home/bruce/anaconda3/envs/lerobot_ethan/ cd lerobot python lerobot/scripts/control_robot.py --robot.type=koch --control.type=teleoperate ``` Visualize dataset: ``` cd ~/CSL conda activate /home/bruce/anaconda3/envs/lerobot/ cd lerobot python lerobot/scripts/visualize_dataset_html.py --repo-id demo/example ``` Inference mode: ``` cd ~/CSL conda activate /home/bruce/anaconda3/envs/lerobot_ethan/ cd lerobot python lerobot/scripts/control_robot.py --robot.type=koch --control.type=record --control.fps=30 --control.single_task="example" --control.repo_id="demo/example" --control.num_episodes=1 --control.push_to_hub=true --control.episode_time_s=50 --control.reset_time_s=10 ``` ![image](https://hackmd.io/_uploads/BJ0AwXWTke.png) Demo: https://drive.google.com/file/d/1VNntEfi1J__0qgROeLTH8pW8_sK7-m50/view?usp=drive_link ## How to train your own imitation learning model? ## Collect data ### Huggingface Token Generation 1. Create Huggingface Token(Write permittion) 2. Run this command with your own huggingface write token ``` huggingface-cli login --token your_token --add-to-git-credential ``` After that, you should see your huggingface user name in this directory: ``` ls -l /home/bruce/.cache/huggingface/lerobot/ bruce HWJ658970 lalalala0620 lerobot StanleyChueh ``` And now, you are ready to train your own Imitation Learning model by LeRobot!! ### Teleoperation & Record dataset Test teleoperation ``` cd ~/CSL conda activate /home/bruce/anaconda3/envs/lerobot_ethan/ cd lerobot python lerobot/scripts/control_robot.py --robot.type=koch --control.type=teleoperate ``` If everything is done, we can start recording the dataset! ``` conda activate /home/bruce/anaconda3/envs/lerobot_ethan/ python lerobot/scripts/control_robot.py --robot.type=koch --control.type=record --control.fps=30 --control.single_task="example" --control.repo_id="demo/example" --control.num_episodes=1 --control.push_to_hub=true --control.episode_time_s=50 --control.reset_time_s=10 ``` After recording the dataset, you can use the following command to visualize the dataset. ``` python lerobot/scripts/visualize_dataset_html.py --repo-id demo/example ``` #### Important Note: 1. press **right key** for saving demo, **left** one for resetting the environment(if the demo fails to finish) 2. I suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings.**REMEMBER** **,** **DATA QUALITY IS CRITICAL IN DATA COLLECTION.** 3. Place Camera to one in front, and one in top-down view 4. The object or target should be seen in **both camera** view as long as possible to keep the better data quality,if the robotic arm block the object in several frames, it will cause poor performance in inference. #### Known Issue 1. It's difficult to use more than two cameras in setting due to the communication speed, the hub is too slow to send camera info if you plug more than one camera. 2. You have to insert THE camera in your PC first(phone camera), and then insert the other one with hub(front camera). ## Train After Collecting dataset, you are ready to train your own imitation learning model! ``` conda activate /home/bruce/anaconda3/envs/lerobot/ python lerobot/scripts/train.py --dataset.repo_id=Your_huggingface_username/task_name --policy.type=act --output_dir=outputs/train/your_task_name --job_name=your_task_name --save_freq=2000 --device=cuda --wandb.enable=true ``` **Important Note:** 1. The default training step is 100K, it takes around 8hours to train. 2. Feel free to test the model performance in training process, you can keep the training terminal open, and create another terminal to test the current model performance. ## Inference After training, it's time to test your own model! ``` conda activate /home/bruce/anaconda3/envs/lerobot_ethan/ python lerobot/scripts/control_robot.py \ --robot.type=koch \ --control.type=record \ --control.fps=30 \ --control.single_task="eval_example" \ --control.repo_id="ethanCSL/eval_example" \ --control.num_episodes=1 \ --control.warmup_time_s=2 \ --control.episode_time_s=300 \ --control.reset_time_s=10 \ --control.push_to_hub=true \ --control.policy.path=outputs/train/example/checkpoints/last/pretrained_model/ ``` **Important Note:** 1. **Every time before you run the inference code, you have to remove the (eval_your_task_name), which is saved in this directory!!!:** ``` /home/bruce/.cache/huggingface/lerobot/your_huggingface_user_name/ ``` eg: ``` ~/.cache/huggingface/lerobot/lalalala0620$ ls eval_act_koch_lego koch_blue_paper_tape koch_pick_place_lego koch_test koch_yellow_paper_tape ``` in this case, delete eval_act_koch_lego, before running the inference mode. ## Experiment Result ### Lego_50 Task: lift lego block Dataset: 50 demos Success rate:10% #### Takeaway: ### Lego_100 Task: lift lego block Dataset: 50 demos Success rate:15~20% #### Takeaway ### Lego_100_class Task: Seperate the lego with yellow and white, and put it into the bin. Dataset: 100 demos Success rate: (70~80% to catch only lego block one by one to its bin) (30~40% if two lego blocks put together) #### Takeaway ### Lego_100_class_test2 Task: Seperate the lego with yellow and white, and put it into the bin. Dataset: 100 demos Success rate:10~15% #### Takeaway 4/1 train 4/2 test 3 檔名:final_test 測資:80筆 描述: 黑白方塊放入白黃區域 直直:20筆 橫橫:20筆 左斜斜:10筆 右斜斜:10筆 左右斜斜:20筆 先夾白再夾黑 成功率:特定位置定擺法60%以上,(位置:左黑右黃並排放中間),其他位置幾乎無法成功夾取(10%) ### ## Troubleshooting #### Record data If you fail to record dataset, the following things are the things you have to inspect. **1. Permittion Issue** You will have to give access to both camera and robotic arm in the first time they've been plugged in your pc. ``` sudo chmod 666 /dev/video* sudo chmod 666 /dev/ttyUSB* ``` **2.Huggingface user** If you have problem using your own huggingface account while running command, please double check you have give access by the generated write token. (huggingface-cli login --token your_token --add-to-git-credential ) **3.Camera or motor permittion** If you have problem setting the camera or motor, check the permittion or you are using incorrect motor or camera index. Please check the camera and motor index Check robot config: ``` cd lerobot/common/robot_devices/robots/configs.py ``` locate this part: ``` @RobotConfig.register_subclass("koch") @dataclass class KochRobotConfig(ManipulatorRobotConfig): calibration_dir: str = ".cache/calibration/koch" # `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes. # Set this to a positive scalar to have the same value for all motors, or a list that is the same length as # the number of motors in your follower arms. max_relative_target: int | None = None leader_arms: dict[str, MotorsBusConfig] = field( default_factory=lambda: { "main": DynamixelMotorsBusConfig( port="/dev/ttyUSB1", motors={ # name: (index, model) "shoulder_pan": [1, "xl330-m077"], "shoulder_lift": [2, "xl330-m077"], "elbow_flex": [3, "xl330-m077"], "wrist_flex": [4, "xl330-m077"], "wrist_roll": [5, "xl330-m077"], "gripper": [6, "xl330-m077"], }, ), } ) follower_arms: dict[str, MotorsBusConfig] = field( default_factory=lambda: { "main": DynamixelMotorsBusConfig( port="/dev/ttyUSB0", motors={ # name: (index, model) "shoulder_pan": [1, "xl430-w250"], "shoulder_lift": [2, "xl430-w250"], "elbow_flex": [3, "xl330-m288"], "wrist_flex": [4, "xl330-m288"], "wrist_roll": [5, "xl330-m288"], "gripper": [6, "xl330-m288"], }, ), } ) cameras: dict[str, CameraConfig] = field( default_factory=lambda: { "front": OpenCVCameraConfig( camera_index=6, #6 fps=30, width=640, height=480, ), "phone": OpenCVCameraConfig( camera_index=0, fps=30, width=640, height=480, ), } ) ``` Make sure the camera index for "laptop and phone" is compatible to your current setup. Check camera index ``` ls /dev/video* ``` ``` cameras: dict[str, CameraConfig] = field( default_factory=lambda: { "laptop": OpenCVCameraConfig( camera_index=0, fps=30, width=640, height=480, ), "phone": OpenCVCameraConfig( camera_index=1, fps=30, width=640, height=480, ), } ``` Check robotic arm index: ``` ls /dev/ttyUSB* ``` And modify USB port Use this command: ``` python lerobot/scripts/find_motors_bus_port.py ``` ``` leader_arms: dict[str, MotorsBusConfig] = field( default_factory=lambda: { "main": DynamixelMotorsBusConfig( port="/dev/ttyUSB1", motors={ # name: (index, model) "shoulder_pan": [1, "xl330-m077"], "shoulder_lift": [2, "xl330-m077"], "elbow_flex": [3, "xl330-m077"], "wrist_flex": [4, "xl330-m077"], "wrist_roll": [5, "xl330-m077"], "gripper": [6, "xl330-m077"], }, ), } ) follower_arms: dict[str, MotorsBusConfig] = field( default_factory=lambda: { "main": DynamixelMotorsBusConfig( port="/dev/ttyUSB0", motors={ # name: (index, model) "shoulder_pan": [1, "xl430-w250"], "shoulder_lift": [2, "xl430-w250"], "elbow_flex": [3, "xl330-m288"], "wrist_flex": [4, "xl330-m288"], "wrist_roll": [5, "xl330-m288"], "gripper": [6, "xl330-m288"], }, ), } ) ``` ## Train LeRobot with Franka emika panda dataset **1. Navigate to the desired directory** ``` cd ~/.cache/huggingface/lerobot/StanleyChueh ``` **2. Clone from huggingface nyu franka dataset** ``` git clone https://huggingface.co/ethanCSL/three_cube_stack ``` **4.Start Training** On 5090 ``` conda activate lerobot_nn cd lerobot_nn lerobot-train --dataset.repo_id=ethanCSL/pick_n_place_50 --policy.type=act --output_dir=outputs/train/act_pick_n_place_50 --job_name=act_pick_n_place_50 --policy.device=cuda --policy.repo_id=ethanCSL/act_policy --dataset.video_backend=pyav ``` note: tested branch: 1786916a ``` cd lerobot git checkout 1786916a ``` **5.Transfer files between PCs** Make sure these two devices are in the same domain ``` rsync -avzP ~/.cache/huggingface/lerobot/ethanCSL/XXX target_name@target_ip:~/.cache/huggingface/lerobot/ethanCSL/XXX ``` # Franka Lerobot ## Try it now first! Please make sure every terminal is in ROS1 noetic environment, and check is CSL-FET@TT. ``` source /opt/ros/noetic/setup.bash ``` ### Connect to Franka There're two ways to connect to Franka 1. Command line ``` sudo ip addr add 172.16.0.1/24 dev enxc4411e75389a sudo ip addr flush dev enxc4411e75389a sudo ip addr add 172.16.0.1/24 dev enxc4411e75389a sudo ip link set enxc4411e75389a up sudo ufw disable ``` 2. Run the connection code ``` cd ~/franka_record python connect_franka.py ``` ### Launch Franka_ROS ``` cd ~/franka_ws source /opt/ros/noetic/setup.bash source devel/setup.bash roslaunch franka_example_controllers cartesian_impedance_example_controller.launch robot_ip:=172.16.0.2 load_gripper:=true launch_rviz:=false ``` ### Control Robot ``` cd ~/avp_teleoperate_h1/teleop/lerobot_record source /opt/ros/noetic/setup.bash python roboticArm_pose_remote_threshold_ros1_test.py ``` ### Vision Pro Control ``` cd ~/avp_teleoperate_h1/teleop/lerobot_record source /opt/ros/noetic/setup.bash python teleop_arm_pose_threshold_ros1_test.py ``` If you have this error when running the above code: > [Errno 98] error while attempting to bind on address ('0.0.0.0', 8012): address already in use > Check PID > ``` > sudo lsof -i :8012 > ``` > Kill PID > ``` > sudo kill -9 PID > ``` ### LeRobot Record with Franka #### Record ``` cd ~/franka_record/stanley_record source /opt/ros/noetic/setup.bash python record_ros1_test.py --single_task custom_task --repo_id your_huggingface_account/custom_task ``` > Please replace 'custom_task' and 'your_huggingface_account/custom_task' to the actual task and repo_id you want. #### Visualization Push to huggingface ``` cd ~/franka_record/ python push_to_hub.py ``` Note: > If you have trouble pushing to huggingface, please make sure you have the authentication set in your PC, please follow the instruction below: > https://hackmd.io/-TIq0K1NROibtOAh4-sfSQ?both=&stext=1313%3A28%3A0%3A1751419547%3Aeqh_-6 > Now you can do the visualization! ``` conda activate lerobot python lerobot/scripts/visualize_dataset_html.py \ --repo-id your_huggingface_user_name/repo_id ``` ![image](https://hackmd.io/_uploads/Hyym1lgHlx.png) ##### If you don't have your own dataset recorded, please try the following command to see the example: ``` python lerobot/scripts/visualize_dataset_html.py \ --repo-id StanleyChueh/franka_lerobot_red_cube ``` ----------------------------- **Note:** > Please make sure you have dataset in > ``` > ls ~/.cache/huggingface/lerobot/StanleyChueh/franka_lerobot_red_cube > ``` > Otherwise you should re-clone it: > ``` > cd ~/.cache/huggingface/lerobot/StanleyChueh > git clone https://huggingface.co/datasets/StanleyChueh/franka_lerobot_red_cube > ``` ### LeRobot Replay with Franka 1. Launch Franka ROS ``` cd ~/franka_ws source /opt/ros/noetic/setup.bash source devel/setup.bash roslaunch franka_example_controllers cartesian_impedance_example_controller.launch robot_ip:=172.16.0.2 load_gripper:=true launch_rviz:=false ``` 2. Set initial position and switch to impedance control ``` cd ~/avp_teleoperate_h1/teleop/lerobot_record source /opt/ros/noetic/setup.bash python roboticArm_pose_remote_threshold_ros1_test.py ``` > ## Note!!!!!!!!!: > [INFO] [1751621729.042889]: Switched to cartesian impedance controller. > Once this message pops out, you can shut this code down. 3. Replay Episode ``` python ~/franka_record/stanley_record/tools/replay_ros1_v2_quat.py ``` ### LeRobot Training with Franka #### ACT ``` conda activate lerobot cd ~/CSL/lerobot_new python -m lerobot.scripts.train --policy.type=act --dataset.repo_id=user_name/repo_name --output_dir=outputs/train/your_task_name ``` #### SmolVLA ``` python train.py --policy.path=lerobot/smolvla_base --dataset.repo_id=ethanCSL/smolvla_multiblock --batch_size=16 --steps=20000 --output_dir=outputs/train/svla_multiblock --job_name=my_smolvla_training --policy.device=cuda --wandb.enable=false --policy.repo_id=svla_multiblock ``` ### LeRobot Evaluation with Franka #### On Agx Orin Launch socket server ``` conda activate lerobot python lerobot/lerobot/scripts/eval_franka_socket_v2.py ``` #### On control PC(10.100.4.119), On bruce PC(10.100.4.42) ##### Launch Franka_ROS ``` cd ~/franka_ws source /opt/ros/noetic/setup.bash source devel/setup.bash roslaunch franka_example_controllers cartesian_impedance_example_controller.launch robot_ip:=172.16.0.2 load_gripper:=true launch_rviz:=false ``` ##### Control robot ``` cd ~/avp_teleoperate_h1/teleop/lerobot_record source /opt/ros/noetic/setup.bash python roboticArm_pose_remote_threshold_ros1_test.py ``` > ## Note!!!!!!!!!: > [INFO] [1751621729.042889]: Switched to cartesian impedance controller. > Once this message pops out, you can shut this code down. ##### Publish camera topic ``` python ~/franka_record/stanley_record/image_publisher_SA.py ``` ##### Launch socket server & client ``` python evaluation.py --server-ip 10.100.4.42 --target-hz 10 ``` ``` python franka_socket_test_stability_test.py --ckpt-path /home/bruce/CSL/lerobot_nn/src/lerobot/scripts/outputs/train/act_pick_n_place_50/pretrained_model/ --eval-freq 10 ``` ### 📁 Project Structure ```plaintext avp_teleoperate_h1/ ├── act/ ├── assets/ ├── img/ ├── scripts/ ├── teleop/ │ ├── teleop_arm_pose_threshold_ros1_test.py # 🖐️ Hand tracking via Vision Pro │ └── roboticArm_pose_remote_threshold_ros1_test.py # 🤖 Franka Panda control franka_ros/ └── src/ └── franka_ros/ └── franka_example_controllers/ └── launch/ └── cartesian_impedance_example_controller.launch # Launch file for Cartesian impedance control franka_record/ ├── franka_dataset.py # LeRobot-compatible dataset structure └── record_ros1.py # ROS1-based recording script ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully