邱品峰
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # LP-Explain: Local Pictorial(圖像化) Explanation for Outliers ## 資料集處理 > 目前所有的datasety都找到了(paper裡面有附dataset連結) > **目前只有Air quality Dataset 有做預處理(處理日期),其他的我目測不需要** [Dataset link](https://drive.google.com/drive/folders/1tAzPU9wNP_MJOOFWN_VPuC-HgcRijrQz?usp=sharing) **修正:** 這些function會回傳3個numpy array 1. data 2. outlier index 3. inlier index ```python= from datetime import date from sklearn.datasets import load_iris from sklearn.ensemble import IsolationForest from typing import Tuple from numpy.typing import NDArray import scipy.io import pandas as pd import numpy as np # Air quality dataset def read_airquality(filename: str) -> Tuple[NDArray, NDArray, NDArray]: df = pd.read_csv(filename) date_list = df['Date'].values time_list = df['Time'].values # data preprocess for index in range(len(date_list)): temp = date_list[index].split('/') temp2 = time_list[index].split(':') x = date(int(temp[2]),int(temp[1]),int(temp[0])) date_list[index] = x.toordinal() time_list[index] = temp2[0] data = df.values # outlier detector clf = IsolationForest(n_estimators=30, random_state=10101) pred = clf.fit_predict(data) inlier_index = np.where(pred[:] == 1)[0] outlier_index = np.where(pred[:] == -1)[0] return data, outlier_index, inlier_index # Iris dataset def read_iris() -> Tuple[NDArray, NDArray, NDArray]: data = load_iris()['data'] # outlier detector clf = IsolationForest(max_samples=0.5, max_features=1.0, random_state=5) pred = clf.fit_predict(data) # -1 represent outlier inlier_index = np.where(pred[:] == 1)[0] outlier_index = np.where(pred[:] == -1)[0] return data, outlier_index, inlier_index # Others dataset (breastw、pendigits、mammography、annthyroid) def read_matfile(filename: str) -> Tuple[NDArray, NDArray, NDArray]: mat = scipy.io.loadmat(filename) data, label = mat['X'], mat['y'] inlier_index = np.where(label[:, 0] == 0)[0] outlier_index = np.where(label[:, 0] == 1)[0] return data, outlier_index, inlier_index ``` ## 變數定義 D : dataset 資料集 F : feature |F| = d 特徵數量 f~k~ : the k-th feature of F A : outliers ;|A| = m 離群數量 FP: feature pair ;一組兩個特徵 ![](https://i.imgur.com/X5yQRA8.png) X∈R^mxn^, n=d(d-1)/2->FP可能總數, m->outlier數量 SQ : a set of feature pairs sequences (sq~1~,sq~2~, ...,sq~m~) sq~k~: 用X~k,~排序過的feature pairs並挑選出top-l,l是自定義參數<=n (sq~1~^k^,sq~2~^k^, ..., sq~l~^k^) C : outliers的分群結果 {C~1~,C~2~, ...,C~c~} W=∈R^n×c^ : W~j,i~ 可做為cluster i 中第j個feature pairs的重要性評估 c->cluster ## 初始化參數設置 Isolation Fores產生X matrix ```python= def get_combinations(d: int): from itertools import combinations return combinations(range(d), 2) def get_outliers_index(data: np.ndarray) -> np.ndarray: from sklearn.ensemble import IsolationForest clf = IsolationForest(max_samples=0.5, max_features=1.0, random_state=5) out = clf.fit_predict(data) return np.where(out == -1)[0] def get_outliers_score(data: np.ndarray) -> np.ndarray: from sklearn.ensemble import IsolationForest clf = IsolationForest(n_estimators=30, random_state=10101) clf = clf.fit(data) scores = -clf.decision_function(data) return scores def X_SQ_generation(data, l=7): X = np.empty((m, n), dtype=np.float64) for i, j in enumerate(get_combinations(d)): # d = 4, out = ((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)) X[:, i] = get_outliers_score(data[:, i])[outliers_index] # from OneClassSVM X = (X - X.min()) / (X.max() - X.min()) # normalize to [0, 1] SQ = np.argsort(X, axis=1)[:, ::-1][:, :l] return X, SQ ``` {l,h,φ} -> {7,128,0.9} {∀θi=1\|i∈ \[1,2, ..., c\]} c是使用self-tuning spectral clustering自動產生 ## 評估指標 incrimination(%) =osFP~j~,j / osFP,j osFP~j~,j 表示第j群的feature pairs FP~j~計算出的incrimination osFP,j 表示第j群的所有feature pairs FP計算出的incrimination incrimination計算方式參考 \[15\] N. Gupta, D. Eswaran, N. Shah, L. Akoglu, and C. Faloutsos, “Beyond outlier detection: Lookout for pictorial explanation,” inJoint Euro- pean Conference on Machine Learning and Knowledge Discovery in Databases, pp. 122–138, 2018. ![](https://i.imgur.com/tnETmsV.png) ![](https://i.imgur.com/JtsCtsp.png) ![](https://i.imgur.com/shtJlTU.png) ## 公式 * ![](https://i.imgur.com/MyhPbBN.png) * 先建立圖G,並用上述公式產生兩兩feature pair的相似度作為G的權重,再將其給Node2vec(G, h)產出向量V, h是使用者自定義的參數 * ![](https://i.imgur.com/JHbJKIo.png) * 與圖一相似,只是改成用v作為計算的參數,v~k~∈R^h^ * ![](https://i.imgur.com/qQh3ufk.png) * edge權重計算 * φ∈(0,1),調整top ranked偏好的參數 * max(i,j),i和j中選擇較大的那個rank * 這邊的i和j(sq中的index)本身就是rank * fp~simi~(sq~a~^i^, sq~b~^j^)為圖二的公式,sq~a~^i^為在fp~a~中的第i個feature,sq~b~^j^依此類推 * 所以公式計算是fp~a~中的第i個feature到fp~b~中的第j個feature的edge權重 * ![](https://i.imgur.com/V5AlJxi.png) * 此公式是將sq~a~與sq~b~兩個向量使用Primal-Dual Maximum Weight Matching algorithm計算出兩向量的Maximum Weight Edge後將這些得出來的edge權重加權,最後乘上(1 - φ)。 * Primal-Dual Maximum Weight Matching algorithm在python中可以直接使用現有的library來計算,以下為公式4以python來實現的範例code: ```python= import networkx as nx import networkx.algorithms.matching as matching G = nx.Graph() # empty graph for i in range(len(sq_a)): for j in range(len(sq_b)): G.add_edge(i, j, weight = weight_a_b[i][j]) #建立fp_a與fp_b之間的edge與權重 M = matching.max_weight_matching(G, maxcardinality = True) weight_sum = 0 for i, j in M: weight_sum += weight_a_b[i][j] weight_sum *= (1 - φ) ``` * 上面的範例code假設都已經將sq~a~與sq~b~的feature得出,兩個向量中的各個edge權重已經藉由公式3算出,所以在5~7行中可以直接建立graph並使用networkx裡的function直接得出Maximum Weight Edge最後加總 * ![](https://i.imgur.com/6AQjlxO.png) * ![](https://i.imgur.com/OeFGfel.png) * ![](https://i.imgur.com/8z5g5do.png) * ![](https://i.imgur.com/DZyzWat.png) ### IsolationForest IsolationForest是一種用以異常檢測的算法,而X matrix即是使用本演算法產生的 python code如下,程式使用的是sklearn提供的IsolationForest,其與論文有相同的reference ```python= from sklearn.ensemble import IsolationForest import numpy as np X = np.array([[-1, -1], [-2, -1], [-3, -2], [0, 0], [-20, 50], [3, 5]]) clf = IsolationForest(n_estimators=30) clf.fit(X) # fit 10 trees print(clf.predict(X)) print(clf.decision_function(X)) #result #predict->+1表示正常值, -1代表異常 #decision_function->異常評分 #[ 1 1 1 1 -1 -1] #[ 0.14499332 0.14499332 0.07289614 0.10108986 -0.22917175 -0.07415002] ``` 總共會抽出n*(n-1)/2![](https://i.imgur.com/wUegrtN.png) IsolationForest參數詳解 n_estimators : 森林中樹的棵數 (default=100) max_samples : 每棵樹使用的樣本個數(default=”auto”) max_features : 每棵樹使用的特徵個數 (default=1.0) contamination : 使用者設置樣本中異常點的比例(default=0.1) (0.0~0.5) 目前猜測X matrix生成的程式碼如下 n個參數兩兩抽出算一個decision_function 成為X matrix ![](https://i.imgur.com/93jf5of.png) ```python= from sklearn.ensemble import IsolationForest import numpy as np import itertools x = np.random.randint(-50, 50, size=(30, 6))#假設有30比資料 6個參數 pair_features_combination_len = len(x[0])*(len(x[0])-1)//2 X_matrix = np.zeros((len(x), pair_features_combination_len)) for i, pair_feature_index in enumerate(itertools.combinations(range(len(x[0])), 2)): pair_feature = x[:, pair_feature_index] clf = IsolationForest(n_estimators=30) clf.fit(pair_feature) X_matrix[:, i] = clf.decision_function(pair_feature).copy() print(X_matrix) ``` ### Node2Vec 【30】 由公式1及圖4獲得G,並透過現有[library](https://pypi.org/project/node2vec/)計算V ```python= def generate_graph(X: np.ndarray): m, n = X.shape g = nx.Graph() g.add_nodes_from(range(n)) for a, b in get_combinations(n): fp_a = X[:, a] fp_b = X[:, b] e_w = 1 / (1 + np.sqrt(np.square(fp_a - fp_b)).sum()) g.add_edge(a, b, weight=e_w) return g def get_V(G: nx.Graph, h: int = 128) -> np.ndarray: node2vec = Node2Vec(G, seed=10101) word2vec = node2vec.fit() V = [] for n in G.nodes: V.append(word2vec.wv[str(n)]) return np.stack(V, axis=0)[:, :h] # (n, h) ``` ### Primal-Dual Maximum Weight Matching Algorithm【31】 結合整個公式3,4及Primal-Dual Maximum Weight Matching ```python= def fp_simi(vec_fp_a, vec_fp_b): return 1 / (1 + np.sqrt(np.sum(np.power(vec_fp_a - vec_fp_b, 2)))) def maximum_weight_matching(SQ, V, l = 7, phi = 0.5): #V 為get_V輸出的結果, SQ為X_SQ_generation輸出的SQ, SQ要用argsort N = len(SQ) S: np.ndarray = np.ones((N, N) , dtype = "float64") for a, b in get_combinations(N): BG = nx.Graph() # empty graph e_bp: np.ndarray = np.zeros((l, l) , dtype = "float64") s_ab = 0 for i, fp_a in enumerate(SQ[a]): for j, fp_b in enumerate(SQ[b]): e_bp[i][j] = fp_simi(V[fp_a], V[fp_b]) * np.power(phi, max(i, j)) BG.add_edge(i, j + l, weight = e_bp[i][j]) #建立fp_a與fp_b之間的edge與權重 M = matching.max_weight_matching(BG, maxcardinality = True) for i, j in M: i, j = min(i, j), max(i, j) - l s_ab += e_bp[i][j] s_ab *= (1 - phi) S[a][b] = S[b][a] = s_ab return S #Self-Tuning Spectral Clustering的輸入S ``` ### Self-Tuning Spectral Clustering (STSC【32】) #### 論文主要內容與工作 Clustering常用k-mean,當數據的分佈和事先假定的模型匹配度很高時能夠提供高品質的結果。然而,當數據以更複雜和未知的形狀排列時,這些方法效果不佳。另一種用於處理此類結構化數據的方法是Spectral Clustering,它只需要對點到點相似性矩陣進行光譜分析。 但Spectral Clustering有三個問題,論文對此進行改進。 #### 程式碼 ```python= import numpy as np from stsc_ulti import affinity_to_lap_to_eig, reformat_result, get_min_max from stsc_np import get_rotation_matrix as get_rotation_matrix_np from stsc_autograd import get_rotation_matrix as get_rotation_matrix_autograd from stsc_manopt import get_rotation_matrix as get_rotation_matrix_manopt def self_tuning_spectral_clustering(affinity, get_rotation_matrix, min_n_cluster=None, max_n_cluster=None): w, v = affinity_to_lap_to_eig(affinity) min_n_cluster, max_n_cluster = get_min_max(w, min_n_cluster, max_n_cluster) re = [] for c in range(min_n_cluster, max_n_cluster + 1): x = v[:, -c:] cost, r = get_rotation_matrix(x, c) re.append((cost, x.dot(r))) print('n_cluster: %d \t cost: %f' % (c, cost)) COST, Z = sorted(re, key=lambda x: x[0])[0] return reformat_result(np.argmax(Z, axis=1), Z.shape[0]) def self_tuning_spectral_clustering_np(affinity, min_n_cluster=None, max_n_cluster=None): return self_tuning_spectral_clustering(affinity, get_rotation_matrix_np, min_n_cluster, max_n_cluster) def self_tuning_spectral_clustering_autograd(affinity, min_n_cluster=None, max_n_cluster=None): return self_tuning_spectral_clustering(affinity, get_rotation_matrix_autograd, min_n_cluster, max_n_cluster) def self_tuning_spectral_clustering_manopt(affinity, min_n_cluster=None, max_n_cluster=None): return self_tuning_spectral_clustering(affinity, get_rotation_matrix_manopt, min_n_cluster, max_n_cluster) ``` ### Feature pair selection 求出每個cluster的weight ![](https://i.imgur.com/DT4qJd1.png) X~ak,.~是outlier score一個outlier對所有fp經過isolation forest的值(假設10個feature pair的話,長度就是10*1) W~.,i~是需要求的權重,長度與X~ak,.~相同 步驟 1. X~ak,.~與W~.,i~做element-wise相乘 所得到的向量代表一個outlier的所有feature pair乘某個權重(這個權重待求) 權重的限制條件 : ![](https://i.imgur.com/fyl5BMd.png) 1. ||W||~2,1~ ![](https://i.imgur.com/ogPucAR.png) 2. W矩陣中的每個element都要符合,0<=element<=1 2. max(step1) 代表對每個outlier都取出step1最大的乘積 3. 每一個outlier乘一個自訂的參數θ,每個cluster一個θ,θ的範圍 : (θ1, θ2, ..., θc) ∈ {0, 1} 4. 將同個cluster中的每個outlier所做出的step3都加總起來 因此每個cluster只會有一個權重 ### CVX Solver【33】 >eq6 ![](https://i.imgur.com/zl9omGD.png) * **fp_num:** number of feature pairs * **C:** cluster from 'Self-Tuning Spectral Clustering' * **cluster_size:** every cluster's size * **cluster_num:** number of clusters * **W:** weight matrix (Wj,i for the jth feature pair in the ith cluster) * **Z:** Z's shape (cluster_num, cluster_siez[i], fp_num) * **summation:** eq6's summation * **contraints:** List of constraints * **lbda:** eq6's lambda ```python= def cvx_solver(C: List, X: NDArray, fp_num: int, lbda: int) -> NDArray: # parameters configuration: cluster_size = [len(c) for c in C] cluster_num = len(C) W = cp.Variable((fp_num, cluster_num)) Z = [cp.Variable((cluster_size[i], fp_num)) for i in range(cluster_num)] theta = np.ones((cluster_num)) summation = 0 constraints = [W >= 0, W <= 1, cp.mixed_norm(W, 2, 1) <= lbda] # sigma(sigma(theta(z * X.T))) for i in range(cluster_num): for ak in range(cluster_size[i]): summation += theta[i] * (Z[i][ak] @ X[C[i][ak]].T) # eq6 constraints temp_summation = 0 for j in range(fp_num): temp_summation += Z[i][ak][j] constraints.append(Z[i][ak][j] <= W[j][i]) constraints.append(temp_summation <= 1) # solve problem problem = cp.Problem(cp.Maximize(summation), constraints) problem.solve() return W.value ``` ## 2021/12/12 程式執行結果 >目前6個dataset都跑過一次了,結果在github上(6個.ipynb檔) >用.ipynb比較好測試0.0 >**我不確定outlier detector的參數怎麼調比較正確**,目前都是先隨便設,看出來的結果好不好 * [Air Quality Dataset](https://github.com/Eric07110904/NTUST-Data-Mining-Final/blob/master/airquality_demo.ipynb) * [Iris Dataset](https://github.com/Eric07110904/NTUST-Data-Mining-Final/blob/master/iris_demo.ipynb) * [Breast Cancer Dataset](https://github.com/Eric07110904/NTUST-Data-Mining-Final/blob/master/breastw_demo.ipynb) * [Mammography Dataset](https://github.com/Eric07110904/NTUST-Data-Mining-Final/blob/master/mammograph_demo.ipynb) * [Annthyroid Dataset](https://github.com/Eric07110904/NTUST-Data-Mining-Final/blob/master/annthyroid_demo.ipynb) * [Pendigits Dataset](https://github.com/Eric07110904/NTUST-Data-Mining-Final/blob/master/pendigit_demo.ipynb) ## 問題與討論 (2021/12/11) * 我覺得 X generation可能有問題,**isolation forest參數應該不能是寫死的** * 因為不知道原論文參數是如何設定的,所以我們的**X**肯定不一樣,以此類推,**C、W也不一樣(出來的散點圖會跟paper不同)。** * 我跑example.py (air quality dataset)跑很久ㄟ@@ * air quality dataset的outlier太多了導致要建很多的graph,我再看看能怎麼優化(maximum_weight_matching的部分) * 有m個outlier就要建立 $m * (m - 1) / 2$個graph * 我把算matching那邊稍微優化後有跑稍微快一點,然後把結果都進去跑分群跑超久都還沒跑出來... >那個clustering的部分,paper最後是分8群,還是強制設8群跑看看? >因為我run example.py的時候,印象中他分到20幾群還繼續跑0.0。 * 2021/12/08 疑問 這樣看起來read_airquality()會有問題,沒傳到filename ![](https://i.imgur.com/sDv6S9p.png) 那我把read_airquality的filename寫成常數`dataset/AirQualityUCI_req.csv` >**cvx solver那邊也push到 utils folder上了** * 要怎麼計算每個feature的outlier scores (fp~i~) * 我看他是說用任意可計算2d的outlier的outlier detection method來生成分數,應該跟你想得差不多 * 論文是是使用IsolationForest作為outlier detection method,詳細執行方式於IsolationForest那邊有解釋。 * 請問一下||W||~2,1~是什麼意思QWQ * ![](https://i.imgur.com/nnWXV1y.png) * 幫矩陣算的每一個col算長度ㄉ樣子 * ![](https://i.imgur.com/ogPucAR.png) * 謝大佬XD ###### tags: `資料探勘`

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully