## Tutorial:Propositional Equivalence
<!-- .slide: style="font-size: 36px;" -->
TA: John, ZHANG ZIHAO(mc05374@um.edu.mo)
Teacher: Prof. XU
*2021.9.3*
CISC1002 Discrete Structure
###### [Online link](https://hackmd.io/@zihol/cisc1002_01)
---
### Agenda
1. Brief review of the content in the lecture
2. Practice
3. Assignment Policy and Release
4. Some Remarks
*Q&A panel is open for any time*
---
### Brief review of the content in lecture
+ Propositional Logic
+ Propositional Equivalences
----
#### Terms
Proposition, compound propositions, conjunction, dis-conjunction, negation, truth table, only if, if and only if, tautology, contradiction, contingency, logical equivalence,
---
#### Propositional Logic
$\wedge$ Conjunction/And
$\vee$ Disconjuntion/Or(inclusive or)
$\oplus$ Exclusive or
----
$p \oplus q$ Truth Table
| p | q | exclusice-or |
| ------ | ------ | ------|
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | F |
----
$p \to q$ Truth Table
| p | q | Conditional Statements |
| ------ | ------ | ------|
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |
----
+ CONVERSE, CONTRAPOSITIVE, AND INVERSE
+ Precedence of Logical Operators
negation > And > Or > implication
---
#### Propositional Equivalences
<!-- .slide: style="font-size: 28px;" -->
*Table 6, page 27*
Identity laws
$$
p \wedge \textbf{T} \equiv p \\
p \vee \textbf{F} \equiv p
$$
Domination laws
$$
p \vee \textbf{T} \equiv \textbf{T} \\
p \wedge \textbf{F} \equiv \textbf{F}
$$
----
<!-- .slide: style="font-size: 28px;" -->
Idempotent laws
$$
p \wedge p \equiv p \\
p \vee p \equiv p
$$
Double negation law
$$
\neg(\neg P) \equiv p
$$
Commutative laws
$$
p \vee q \equiv q \vee p \\
p \wedge q \equiv q \wedge p
$$
----
<!-- .slide: style="font-size: 28px;" -->
Associative laws
$$
(p \wedge q)\wedge r \equiv p \wedge (q \wedge r) \\
(p \vee q)\vee r \equiv p \vee (q \vee r)
$$
Distributive laws
$$
(p \vee r) \wedge (q \vee r) \equiv ( p \wedge q ) \vee r \\ (p \wedge r) \vee (q \wedge r) \equiv ( p \vee q ) \wedge r
$$
De Morgan's laws
$$
\neg ( p \wedge q ) \equiv (\neg p) \vee (\neg q) \\\neg ( p \vee q ) \equiv (\neg p) \wedge (\neg q)
$$
----
<!-- .slide: style="font-size: 28px;" -->
Absorption laws
$$
p \vee (p \wedge q) \equiv p \\p \wedge (p \vee q) \equiv p
$$
Negation laws
$$
p \vee \neg p \equiv \textbf{T} \\ p \wedge \neg p \equiv \textbf{F}
$$
---
### Practice
(a)
$$
(p \wedge q) \to p
$$
| p | q | $p \wedge q$ | $(p \wedge q) \to p$ |
| --- | --- | --- | --- |
| T | T | T | T |
| T | F | F | T |
| F | T | F | T |
| F | F | F | T |
$$
p \to (p \vee q)
$$
| p | q | $p \vee q$ | $p \to (p \vee q)$ |
| --- | --- | --- | --- |
| T | T | T | T |
| T | F | T | T |
| F | T | T | T |
| F | F | F | T |
$$
\neg p \to (p \to q)
$$
$$
(p \wedge q) \to (p \to q)
$$
$$
\neg(p \to q) \to p
$$
$$
\neg(p \to q) \to \neg p
$$
| p | q | $p \to q$ | $\neg (p \to q)$ | $\neg p$ | $\neg(p \to q) \to \neg p$ |
| --- | --- | --- | --- | --- | --- |
| T | T | T | F | F | T |
| T | F | F | T | F | T |
| F | T | T | F | T | T |
| F | F | T | F | T | T |
$$
p \leftrightarrows q \\
(p \wedge q) \vee (\neg p \wedge \neg q)
$$
| p | q | $p \leftrightarrows q$ |
| --- | --- | --- |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |
| p | q | ($p \wedge q$) |
---
### Assignment Policy and Release
---
### Appedix: Common Latex symbol
<!-- .slide: style="font-size: 32px;" -->
| Symbol | Meaning | Latex |
| ------ | ------ | ------|
| $\neg p \qquad \bar{p}$ | negation/not | \neg p \qquad \bar{p} |
| $\wedge$ | conjunction | \wedge or \land|
| $\vee$ | disjunction | \vee or \lor |
| $\oplus$ | exclusive/or | \oplus |
| $\to$ | implication | \rightarrow or \to |
| $\leftrightarrow$ | negation/not | \leftrightarrow |
| $\equiv$ | logically equivalent | \equiv |
----
<!-- .slide: style="font-size: 32px;" -->
(Cont.)
| Symbol | Meaning | Latex |
| ------ | ------ | ------|
| $\gets$ | B if A | \leftarrow or \gets |
| $\longrightarrow$ | ... | \longrightarrow |
| $\in$ | in | \in |
| $\notin$ | not in | \notin |
| $\forall$ | universal quantifier | \forall |
| $\exists$ | existential quantifier | \exists |
| $\because \qquad \therefore$ | because therefore | \because \therefore |
----
<!-- .slide: style="font-size: 32px;" -->
(Cont.)
| Symbol | Meaning | Latex |
| ------ | ------ | ------|
| $\cup$ | Union | \cup |
| $\cap$ | Intersection | \cap |
| $\overline{Subtraction}$ | Subtraction | \overline{Subtraction} |
| $\subset$ | subset | \subset |
| $\subseteq$ | true subset | \subseteq |
| $\emptyset$ | empty set | \emptyset |
---
## Thank you
...
###### tags: `cisc1002`
{"metaMigratedAt":"2023-06-16T09:13:06.485Z","metaMigratedFrom":"Content","title":"Untitled","breaks":true,"contributors":"[{\"id\":\"22a94964-d6f6-424e-a9df-7f45ba06e5c8\",\"add\":5949,\"del\":1234}]"}