# 2020TechXAppliedDL
## Day 1 - Linear Algebra (57 mins)
1. (15 mins) Read pages 29-35, 40-43 of the excerpt [Linear Algebra - Deep Learning](http://www.deeplearningbook.org/contents/linear_algebra.html)
2. (10 mins) Read [Linear Algebra for Deep Learning](https://towardsdatascience.com/linear-algebra-for-deep-learning-506c19c0d6fa)
3. (11 mins with 1.25x) Watch video [Matrix-Matrix Multiplication - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=14)
4. (9 mins with 1.25x) Watch video [Matrix multiplication properties - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=15)
5. (5 mins) Try the below matrix multiplication example [here](http://matrixmultiplication.xyz/):

6. (10 mins) Read 11.2.1 of [深度学习数学基础](https://zh.d2l.ai/chapter_appendix/math.html)
7. (Optional, 15 mins with 1.25x) [L1/4 Linear Algebra - Deep Learning UC Berkeley](https://www.bilibili.com/video/BV14t41147MX?p=4)
## Day 2 - Derivative, Gradient(41 mins)
1. (18 mins with 1.25x) Watch video [Derivative formulas through geometry - 3Blue1Brown](https://www.bilibili.com/video/BV1qW411N7FU?p=3)
2. (17 mins with 1.25x) Watch video [Visualizing the chain rule and product rule - 3Blue1Brown](https://www.bilibili.com/video/BV1qW411N7FU?p=4)
3. (11 mins with 1.25x) Watch video [Patial Derivative Introduction - Khan Academy](https://www.bilibili.com/video/BV1L7411a7Xk)
4. (5 mins with 1.25x) Watch video [Gradient and its calculation - Khan Academy](https://www.bilibili.com/video/BV1L7411a7Xk)
5. (10 mins) Read 11.2.2.1, 11.2.2.3, 11.2.2.4 of [深度学习数学基础 ](https://zh.d2l.ai/chapter_appendix/math.html) for better understanding
## Day 3 - Gradient Descent & Linear Regression (60 mins)
1. (8 mins) Watch [Cost Function - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=5)
2. (11 mins) Watch [Gradient Descent - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=5)
3. (12 mins) Watch [Gradient Descent Intuition - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=5)
4. (10 mins) Watch [Gradient Descent for Linear Regression - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=5)
5. (19 mins) Watch [But what *is* a Neural Network? | Deep learning, Part 1](https://www.bilibili.com/video/BV1bx411M7Zx)
6. (Optional, 10 mins) [Why the gradient is the direction of steepest ascent - Khan Academy](https://www.bilibili.com/video/BV1iE411K7qv)(optional,偏数学推导)
## Day 4 - Gradient Descent, Forward&BackPropogation (55 mins)
1. (21 mins with 1.25x) Watch video [Gradient Descent - 3Blue1Brown](https://www.bilibili.com/video/BV1bx411M7Zx)
2. (14 mins with 1.25x) Watch video [Feedforward propagation - 3Blue1Brown](https://www.bilibili.com/video/BV16x411V7Qg/?spm_id_from=333.788.videocard.0)
3. (10 mins with 1.25x) Watch video [Backpropagation - 3Blue1Brown](https://www.bilibili.com/video/BV16x411V7Qg?p=2)
4. (Optional) Watch video for better understanding [Backpropagation 1 - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=50)
5. (Optional) Watch video for better understanding [Backpropagation 2 - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=51)
6. (Optional) Read Feedforward propagation&Backpropagation [深度学习数学基础](https://zh.d2l.ai/chapter_deep-learning-basics/backprop.html)
7. (10 mins) Compile [Linear Regression](https://www.kaggle.com/init27/fastai-v3-lesson-2-sgd#) to understand how to update weight with Pytorch and have visulization. More details about Pytorch will be introduced in Module 3
## Day 5 - Forward&BackPropogation Continue and more ML (50 mins)
1. (Continued from day 4, 10 mins) Compile [Linear Regression](https://www.kaggle.com/init27/fastai-v3-lesson-2-sgd#)
2. (5 mins) overfitting and underfitting
3. (12 mins with 1.25x) Watch video [PCA 1 - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=81)
4. (15 mins with 1.25x) Watch video [PCA 2 - Andrew Ng](https://www.bilibili.com/video/BV1AD4y1Q7RH?p=82)
5. (15 mins) [PCA animation](https://setosa.io/ev/principal-component-analysis/)
6. (Optional, if you want to know more about PCA) [Eigenvalue&Eigenvector](https://www.bilibili.com/video/BV1ys411472E?p=14)
7. (Optional) [Eigenvalue&Eigenvector Animation](https://setosa.io/ev/principal-component-analysis/)
8. (Optional) [Eigenvalue&Eigenvector Math](https://www.mathsisfun.com/algebra/eigenvalue.html)