柔性布計畫書 --- ## 計劃書備份 尋找一個最優的閾值\left(T\right),使得類間方差\sigma_b^2\left(T\right)最大。 使用所選閾值T進行圖像二值化。 具體來說,類間方差 \sigma_b^2\left(T\right)和類內方差\sigma_w^2\left(T\right)的計算公式如下: \sigma_0^2\ =\ \sum_{i=1}^{k}{{(i\ -\ \mu_0)}^2\ Pr\ (i\ |\ C_0)\ =\ \sum_{i=1}^{k}{{(i\ -\ \mu_0)}^2\ p_i\ /\ \omega_0}} \sigma_1^2\ =\ \sum_{i=k+1}^{L}{{(i\ -\ \mu_1)}^2\ Pr\ (i\ |\ \complement_1)\ =\ \sum_{i=k+1}^{L}{{(i\ -\ \mu_1)}^2\ p_i\ /\ \omega_1}} 在這裡鍵入方程式。 \sigma_b^2\left(T\right)=\frac{\left(m_G\left(T\right)-m\left(T\right)\right)^2}{p\left(T\right)\left(1-p\left(T\right)\right)} \sigma_w^2=\ \omega_0\sigma_0^2+\ \omega_1\sigma_1^2\ \sigma_B^2=\ \omega_0\left(\mu_0-\mu_T\right)^2+\ \omega_1\left(\mu_1-\mu_T\right)^2 =\ \omega_0\ \omega_1\left(\mu_1-\mu_0\right)^2 = \sigma_T^2=\ \sum_{i=1}^{L}{{(i\ -\ \mu_T)}^2\ p_i} 其中,m_G\left(T\right)是圖像所有像素的灰度平均值,m\left(T\right)是閾值為T時前景像素的灰度平均值,p\left(T\right)是閾值為T時前景像素所佔的比例,\sigma^2\left(T\right)是閾值為T時前景像素的灰度方差。 Otsu thresholding方法的優點是能夠自動選擇閾值,不需要手動調節閾值,並且通過最大化類間方差和最小化類內方差,可以得到最優的分割效果。
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up